1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
3 years ago
8

Please help me with this

Mathematics
2 answers:
julsineya [31]3 years ago
3 0
X is 19 and y is 84.
Natali [406]3 years ago
3 0

Answer:

x = 19 degrees

y = 84 degrees

Step-by-step explanation:

recall that for an isosceles triangle (which is pictured), the base angles have the same value.

In our case, we can see that the base angles are 48 deg and (3x-9) deg

if they are equal, we can equate them like this:

48 = 3x-9    (add 9 to each side)

48 + 9 = 3x

57 = 3x   (divide both sides by 3)

x = 57/3

x = 19 degrees  (answer)

also recall that the sum of the interior angles of a triangle add up to 180 deg, hence

48 deg + 48 deg + y deg = 180 deg

2(48) + y = 180

96 + y = 180

y = 180 - 96

y = 84 deg

You might be interested in
Find the x-intercept and the y-intercept of 2x + 6y =24
viktelen [127]

Answer:

x-intercept = 12, y-intercept = 4

Step-by-step explanation:

To find the x and y intercept, substitute 0 in for both values.

<u>Substitute 0 into x:</u>

2(0) + 6y = 24

6y = 24

<u>Divide each side by 6:</u>

y = 4

<u>Substitute 0 into y:</u>

2x + 6(0) = 24

2x = 24

<u>Divide each side by 2:</u>

x = 12

4 0
2 years ago
What is 29x56 you get a good reward if you ansewer
stiks02 [169]

Answer:

1624

Step-by-step explanation:

multiply them

7 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=Expand%20%24%28a%20%2B%202%29%283a%5E2%20%2B%2012%29%28a%20-%202%29.%24" id="TexFormula1" titl
sashaice [31]

Answer:

3a^{4} - 48

Step-by-step explanation:

Given

(a + 2)(3a² + 12)(a - 2)

= (a + 2)(a - 2)(3a² + 12) ← expand the first pair of parenthesis using FOIL

=(a² - 4)(3a² + 12) ← expand using FOIL

= 3a^{4} + 12a² - 12a² - 48 ← collect like terms

= 3a^{4} - 48

5 0
3 years ago
Steven wants to equally share his pizza with his three sisters what fraction of the pizza does he in each sister receive
lakkis [162]
1 (Steven) + 3 sisters = 4
They each recieve, 1/4,2/8 or 2 slices of the pizza
6 0
3 years ago
.. Which of the following are the coordinates of the vertices of the following square with sides of length a?
atroni [7]

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

8 0
3 years ago
Other questions:
  • What is 5a*2 -6a+7a*2+3a-2+8a+7= <br> Distribute and combine like terms
    6·2 answers
  • An entry level PR specialist's annual pay is $46,124
    11·1 answer
  • The estimated sum of 857 + 234 is
    10·1 answer
  • ​A gardener has 1000 plants. He wants to plant these in such a way that the number of rows and
    9·1 answer
  • Identify the oblique asymptote of f(x) = quantity x plus 4 over quantity 3 x squared plus 5 x minus 2.
    5·2 answers
  • Find the inequality represented by the graph ​
    15·1 answer
  • I would appreciate if someone could answer this question I will give a brainlist for whoever explains and answers ;)
    7·1 answer
  • Which points are solutions to the linear inequality y &lt; 0.5x +<br>2? Select three options.​
    6·2 answers
  • B<br> [2 0]<br> -2 5<br> What is the determinant of B?<br> Your answer
    10·1 answer
  • HELP DUE IN 10 MINS!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!