The land bridge (Bering strait) and the crossing from Canada
Answer:
38.4 pages
Step-by-step explanation:
5/4 = 1.25
Rate = pages / Time
Time = 1.25 hours
Pages = 48
Rate = 48/1.25
Rate = 38.4
The position function of a particle is given by:

The velocity function is the derivative of the position:

The particle will be at rest when the velocity is 0, thus we solve the equation:

The coefficients of this equation are: a = 2, b = -9, c = -18
Solve by using the formula:
![t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Substituting:
![\begin{gathered} t=\frac{9\pm\sqrt[]{81-4(2)(-18)}}{2(2)} \\ t=\frac{9\pm\sqrt[]{81+144}}{4} \\ t=\frac{9\pm\sqrt[]{225}}{4} \\ t=\frac{9\pm15}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81-4%282%29%28-18%29%7D%7D%7B2%282%29%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81%2B144%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B225%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm15%7D%7B4%7D%20%5Cend%7Bgathered%7D)
We have two possible answers:

We only accept the positive answer because the time cannot be negative.
Now calculate the position for t = 6:
Answer:
- as written, c ≈ 0.000979 or c = 4
- alternate interpretation: c = 0
Step-by-step explanation:
<em>As written</em>, you have an equation that cannot be solved algebraically.
(32^2)c = 8^c
1024c = 8^c
1024c -8^c = 0 . . . . . . rewrite as an expression compared to zero
A graphical solution shows two values for c: {0.000978551672551, 4}. We presume you're interested in c = 4.
___
If you mean ...
32^(2c) = 8^c
(2^5)^(2c) = (2^3)^c . . . . rewriting as powers of 2
2^(10c) = 2^(3c) . . . . . . . simplify
10c = 3c . . . . . . . . . . . . . .log base 2
7c = 0 . . . . . . . . . . . . . . . subtract 3c
c = 0 . . . . . . . . . . . . . . . . divide by 7