To solve this problem, we must assume ideal gas behaviour so
that we can use Graham’s law:
vA / vB = sqrt (MW_B / MW_A)
where,
<span>vA = speed of diffusion of A (HBR)</span>
vB = speed of diffusion of B (unknown)
MW_B = molecular weight of B (unkown)
MW_A = molar weight of HBr = 80.91 amu
We know from the given that:
vA / vB = 1 / 1.49
So,
1/1.49 = sqrt (MW_B / 80.91)
MW_B = 36.44 g/mol
Since this unknown is also hydrogen halide, therefore this
must be in the form of HX.
HX = 36.44 g/mol , therefore:
x = 35.44 g/mol
From the Periodic Table, Chlorine (Cl) has a molar mass of
35.44 g/mol. Therefore the hydrogen halide is:
HCl
Assume 1 tsp is approximately can hold 5 mL liquid.
Given the dose of medicine = 1.5 tsp
Converting 1.5 tsp to mL:
= 7.5 mL
Given the specific gravity of the medicine = 1.23
That means density of the medicine with respect to water will be 1.23
As the density of water is 1 g/mL
We can take density of the medicine to be 1.23 g/mL
Calculating the mass of medicine in grams:

9.225 g medicine is present in one dose.
<h3>
Answer:</h3>
D. Allotrope
<h3>
Explanation:</h3>
What is allotropy?
- Allotropy refers to the existence of an element in more than one physical forms.
- Allotropes are therefore different forms of an element with different physical properties or chemical arrangements.
What are some examples of allotropes?
- Examples of elements that exhibit allotropy include, sulfur and carbon.
- Allotropes of carbon are diamond and graphite.
- Allotropes of sulfur are monoclinic sulfur and rhombic sulfur.
"High-intensity" storms produce larger drops that fall faster than those of "low-intensity"storms and therefore have greater ability to destroy and dislodge particles from the soil matrix.
Hope that helped :)