Answer:
M = 0.1825 M
Explanation:
To do this, let's write the equation again:
Na₂CO₃ + H₂SO₄ ---------> H₂O + CO₂ + Na₂SO₄
As we can see, the equation is already balanced and we can also see that the mole ratio between the acid and the carbonate is 1:1, this means that the moles of the acid, would be the same moles of the carbonate, therefore, we can use the following expression:
M₁V₁ = M₂V₂ (1)
1: Is the carbonate
2: is the acid
To get the concentration of the acid, we need to calculate the moles of the carbonate used. This can be done using the molecular mass of the sodium carbonate, which is 105.9888 g/mol, so the moles:
n₁ = 0.512 / 105.9888 = 0.0048 moles
Now that we have the moles, we can use (1) and calculate the concentration of the acid.
We know that:
n₁ = M₁V₁ (2)
Replacing in (1) we have:
n₁ = M₂V₂
M₂ = n₁ / V₂ (3)
Now all we have to do is replace the values and solve for the concentration:
M₂ = 0.0048 / (0.02630)
<h2>
M₂ = 0.1825 M</h2><h2>
This is the concentration (molarity) of the H₂SO₄</h2>
The best statement
which describes a reaction in a state of equilibrium is letter D. <span>The rate of the forward
reaction equals the rate of the reverse reaction and the </span>concentrations of products and
reactants are constant.
>Chemical equilibrium<span> is defined as<span> the state in which both reactants and products are present
in </span></span>concentrations<span> which have no further tendency to change with time. This state results when the forward
reaction proceeds at the same rate as the </span>reverse
reaction<span>. The </span>reaction rates<span> of the forward and backward reactions are generally not zero,
but equal. Thus, there are no net changes in the concentrations of the reactant(s)
and product(s).</span>
<span> </span>
The best answer is, “Two clear liquids combine and turn cloudy.”
When water freezes form a liquid to a solid. That’s a physical change.
When water boils, it forms bubbles. That’s a physical change.
When you mix ethanol and water, they form a clear solution. That’s a physical change.
Answer:
r = k × [A] × [B]
Explanation:
To determine the rate law, we simply use the slow step reaction equation. The slow step is the rate determining step in the reaction.
A+B→AB
And as we know, the rate of the reaction is proportional directly to the product of the concentration of the reactants which concentration is changing over the course of the reaction.
r = k × [A] × [B]
Where r = rate of reaction
k = reaction rate constant
[A] = Concentration of molecule A
[B] = Concentration of molecule B