Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles
Answer: The molarity of each of the given solutions is:
(a) 1.38 M
(b) 0.94 M
(c) 1.182 M
Explanation:
Molarity is the number of moles of a substance present in liter of a solution.
And, moles is the mass of a substance divided by its molar mass.
(a) Moles of ethanol (molar mass = 46 g/mol) is as follows.

Now, molarity of ethanol solution is as follows.

(b) Moles of sucrose (molar mass = 342.3 g/mol) is as follows.

Now, molarity of sucrose solution is as follows.

(c) Moles of sodium chloride (molar mass = 58.44 g/mol) are as follows.

Now, molarity of sodium chloride solution is as follows.

Thus, we can conclude that the molarity of each of the given solutions is:
(a) 1.38 M
(b) 0.94 M
(c) 1.182 M
a thing, especially a trend or fact, that indicates the state or level of something.
As we know that one mole of any Ideal gas at standard temperature and pressure occupies exactly 22.4 dm³ volume.
Solution for problem:
When 1 mole Neon (Ne) occupies 22.4 dm³ at STP then the volume occupied by 2.25 moles of Neon is calculated as,
= ( 22.4 dm³ × 2.25 moles ) ÷ 1 mole
= 50.4 dm³ 1dm³ = 1 L
Result:
So, 50.4 dm³ (Liter) volume will be occupied by 2.25 moles of Neon gas if it acts ideally at STP.