Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
Answer:
2 moles
Explanation:
Let us first start by calculating the molecular mass of Al₂O₃.
The mass of a mole of any compound is called it's molar mass. 1 molar mass 6.02 X 10²³, or Avogadro's number, of compound entities.
Say, 1 mole of Al₂O₃ has 6.02 X 10²³ of Al₂O₃ molecules/atoms. It also has 2*6.02 X 10²³ number of Al atoms and 3*6.02 X 10²³ number of O atoms.
Molecular mass of Al : 26.981539 u
Molecular mass of O: 15.999 u
Therefore, molecular mass of Al₂O₃ is:
=
u
= 101.960078 u
This can be approximated to 102 u.
1mole weighs 102 u
So, 2moles will weigh 2*102 = 204 u
Answer:
Its official chemical symbol is O, and its atomic number is 8, which means that an oxygen atom has eight protons in its nucleus
Explanation: I hope this helps!!!!!
I know I'm days late but why not answer your question anyway, I don't know how many calories your apple has but I believe it would be 95 calories is a normal amount for an apple. So the correct answer to your question is <span>397480 J Hope I'm correct please let me know and mark me Brainliest.
</span>
Answer:
the type is single replacement