15.63 mol. You need 15.63 mol HgO to produce 250.0 g O_2.
<em>Step 1</em>. Convert <em>grams of O_2 to moles of O_2</em>
Moles of O_2 = 250.0 g O_2 × (1 mol O_2/32.00 g O_2) = 7.8125 mol O_2
<em>Step 2</em>. Use the molar ratio of HgO:O_2 to convert <em>moles of O_2 to moles of HgO
</em>
Moles of HgO = 0.8885 mol O_2 × (2 mol HgO/1 mol O_2) = <em>15.63 mol HgO</em>
Answer:
The hot water was better for removing the oil.
Explanation:
You can see that because the mass went down more with the hot water. So, that means that more oil was taken out of the feather with hot water.
Answer:
in the air and soil
in drinking water
on and inside the human body
Explanation: Hope that helps
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose
One electron in an atom experiences the entire positive charge of the nucleus. Coulomb's law can be used in this situation to determine the effective nuclear charge.
In contrast, the outside electrons in an atom with many electrons are drawn to the positive nucleus and repelled by the negatively charged electrons at the same time. The force between two stationary, electrically charged particles can be measured using Coulomb's law inverse-square law, also known as Coulomb's law. Conventionally, the electric force between two charged objects at rest is referred to as the Coulomb force or electrostatic force.
The electron is a subatomic particle with the symbol e or with an electric charge of one elementarily negative charge. The lepton particle family's first generation includes electrons.
Learn more about Coulomb's law here
brainly.com/question/506926
#SPJ4