What would you need help with?
<span>The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
</span>
<span>Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
</span>
Translaitng <span>8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
</span><span>
</span><span>Answer: correct choice is B.
</span>
The statement 1:"If parallel lines have a transversal, then corresponding angles are congruent" is theorem, because it has been proved. It is a logical consequence of axioms.<span>
The statement 2:"</span>A line has an infinite number of points extending in opposite directions." is postulate or also referred as axiom, because <span>is taken to be true without proof. Is it a true statement that can not be proven. </span>
Question is Incomplete, Complete question is given below.
Prove that a triangle with the sides (a − 1) cm, 2√a cm and (a + 1) cm is a right angled triangle.
Answer:
∆ABC is right angled triangle with right angle at B.
Step-by-step explanation:
Given : Triangle having sides (a - 1) cm, 2√a and (a + 1) cm.
We need to prove that triangle is the right angled triangle.
Let the triangle be denoted by Δ ABC with side as;
AB = (a - 1) cm
BC = (2√ a) cm
CA = (a + 1) cm
Hence,
Now We know that

So;


Now;

Also;

Now We know that




[By Pythagoras theorem]

Hence, 
Now In right angled triangle the sum of square of two sides of triangle is equal to square of the third side.
This proves that ∆ABC is right angled triangle with right angle at B.
Answer
6th of the power of 1 would be 5th power
Step-by-step explanation: