This statment only works for linear systems because in non-linear systems it is okay to have more than one soultion
but if the system is linear than you can define it by it two soultions or in other words it takes two points to form a line and if two lines pass through the same points then you can define them by those point and they are the same line
Answer:
The right answer is C
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
9 - 5 = 4
Answer: D
<u>Step-by-step explanation:</u>
The first matrix contains the coefficients of the x- and y- values for both equations (top row is the top equation and the bottom row is the bottom equation. The second matrix contains what each equation is equal to.
![\begin{array}{c}2x-y\\x-6y\end{array}\qquad \rightarrow \qquad \left[\begin{array}{cc}2&-1\\1&-6\end{array}\right] \\\\\\\begin{array}{c}-6\\13\end{array}\qquad \rightarrow \qquad \left[\begin{array}{c}-6\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7D2x-y%5C%5Cx-6y%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C1%26-6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
The product will result in the solution for the x- and y-values of the system.