Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
<span>The energy of a single photon is given by E = hc/lambda, where h is Planck's constant, c is the speed of light, and lambda is the wavelength.
Plugging the values in gives E = 6.63E-34 x 3.00E8 / 700E-9 = 2.84E-19 Joules
Now one mole of substance is equivalent to 6.02E23 particles, so one mole of these photons will be:
2.84E-19 x 6.02E23 = 1.71E5 Joules</span>
Answer:
θ = 22.2
Explanation:
This is a diffraction exercise
a sin θ = m λ
The extension of the third zero is requested (m = 3)
They indicate the wavelength λ = 630 nm = 630 10⁻⁹ m and the width of the slit a = 5 10⁻⁶ m
sin θ = m λ / a
sin θ = 3 630 10⁻⁹ / 5 10⁻⁶
sin θ = 3.78 10⁻¹ = 0.378
θ = sin⁻¹ 0.378
to better see the result let's find the angle in radians
θ = 0.3876 rad
let's reduce to degrees
θ = 0.3876 rad (180º /π rad)
θ = 22.2º
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
The rock cycle is a basic concept in geology that describes the time-consuming transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.
Plate movements drive the rock cycle by pushing rocks back into the mantle, where they melt and become magna again. Plate movements also cause the folding, faulting and uplift of the crust that move rocks through the rock cycle.
sources: wikapedia, Harmonybaddie on brainly