1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelu [443]
4 years ago
13

4. What is malleability?

Physics
2 answers:
KengaRu [80]4 years ago
8 0

Answer:

The answer is B malleability is the ability to shape.

Explanation:

jok3333 [9.3K]4 years ago
4 0

Answer: B) The ability of steel to be shaped

You might be interested in
A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at rrr = 4.0 mm is πr
max2010maxim [7]

Complete Question

A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at r_1 = 4.0 mm is π rad. At that instant, what is the phase at r_2 = 3.5 mm ? Express your answer to two significant figures and include the appropriate units.

Answer:

The phase at the second point is  \phi _2  = 1.57 \  rad

Explanation:

From the question we are told that

    The wavelength of the spherical wave is  \lambda =  2.0 \ mm =  \frac{2}{1000} = 0.002 \ m

    The first radius  is  r_1  = 4.0 \ mm  = \frac{4}{1000}  = 0.004 \ m

     The phase at that instant is  \phi _1 = \pi \ rad

     The second radius is  r_2  = 3.5 \ mm  = \frac{3.5}{1000}  = 0.0035 \ m

Generally the phase difference is mathematically represented as

          \Delta  \phi =  \phi _2 -  \phi _1

this can also be expressed as

         \Delta \phi =  \frac{2 \pi }{\lambda } (r_2 - r_1 )

So we have that

   \phi _2 -  \phi _1 =   \frac{2 \pi }{\lambda } (r_2 - r_1 )

substituting values

     \phi _2 -  \pi =   \frac{2 \pi }{0.002 } ( 0.0035 - 0.004 )

    \phi _2  =   \frac{2 \pi }{0.002 } ( 0.0035 - 0.004 ) +   3.142

   \phi _2  = 1.57 \  rad

7 0
3 years ago
What is the velocity of a car if it travels east 340 meters in 10 seconds? V = d/t
Nadya [2.5K]

Answer:

The awnser is d

Explanation:

i know cause i took the test

6 0
3 years ago
Read 2 more answers
(a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/ s?
Aleksandr-060686 [28]

Answer:

1.4719 m per sec

Explanation:

Hello

Kinetic energy is the energy associated with the movement of objects. Although there are many forms of kinetic energy  

the formula to use is

E=\frac{mv^{2} }{2}

where m is the mass of the object and v the velocity

lets see the kinetic energy of the sprinter running

E=\frac{65 Kg*10(\frac{m}{s} ^)){2} }{2} \\\\E=\frac{65 *100 }{2} \\E=3250 Joules\\\\

Now, the elephant must have the same kinetic energy

E=\frac{m*v_{2} ^{2} }{2} \\\\E*2=m*v_{2} ^{2}\\ \frac{2E}{m} =v_{2} ^{2} \\\sqrt{\frac{2E}{m} } =v_{2}  \\\\\\v_{2} =\sqrt{\frac{2*3250}{3000} }\\ \\v_{2} =1.4719 \frac{m}{s} \\\\

it works only the positive root, so the elephant must to  walk  to 1.4719 m/s to have the same kinetic energy.

Have a great day

8 0
3 years ago
Both natural processes and human activity are causing some of Earth's permanent
wlad13 [49]

Answer:

The water will get more warm fresh water

Explanation:

8 0
2 years ago
A beam of light strikes a sheet of glass at an angle of 56.6° with the normal in air. You observe that red light makes an angle
Yuri [45]

Answer:

(a). Index of refraction are n_{red} = 1.344 & n_{violet} = 1.406

(b). The velocity of red light in the glass v_{red} = 2.23 ×10^{8} \ \frac{m}{s}

The velocity of violet light in the glass v_{violet} =2.13 ×10^{8} \ \frac{m}{s}

Explanation:

We know that

Law of reflection is

n_1 \sin\theta_{1} = n_2 \sin\theta_{2}

Here

\theta_1 = angle of incidence

\theta_2 = angle of refraction

(a). For red light

1 × \sin 56.6 = n_{red} × \sin 38.4

n_{red} = 1.344

For violet light

1 × \sin 56.6 = n_{violet} × \sin 36.4

n_{violet} = 1.406

(b). Index of refraction is given by

n = \frac{c}{v}

n_{red} = 1.344

v_{red} = \frac{c}{n_{red} }

v_{red} = \frac{3(10^{8} )}{1.344}

v_{red} = 2.23 ×10^{8} \ \frac{m}{s}

This is the velocity of red light in the glass.

The velocity of violet light in the glass is given by

v_{violet} = \frac{3(10^{8} )}{1.406}

v_{violet} =2.13 ×10^{8} \ \frac{m}{s}

This is the velocity of violet light in the glass.

8 0
3 years ago
Other questions:
  • A hypothetical wi-fi transmission can take place at any of three speeds depending on the condition of the radio channel between
    8·1 answer
  • The driver of a car traveling at a speed of 25.5 m/s slams on the brakes and comes to a stop in 3.4 s. If we assume that the car
    12·1 answer
  • The national high magnetic field laboratory holds the world record for creating the strongest magnetic field. for brief periods
    5·2 answers
  • The speed of sound v in gas might plausibly depend on the pressure p, and the volume V of the gas. Use dimensional analysis to d
    8·1 answer
  • ]What is a GOOD AND DETAILED conclusion on a thermos. will be awarded 15 points im desperate
    14·1 answer
  • Which of the following proved that the de broglie’s equation was correct?
    11·1 answer
  • A bullet moving horizontally with a velocity of 40.0 m/s strikes a sandbag and penetrates a distance of 20.0 cm before coming to
    14·1 answer
  • 6)
    10·1 answer
  • Which of the following is a basic solution?
    10·1 answer
  • An astrophysicist mounts two thin lenses along a single optical axis (the lenses are at right angles to the line connecting them
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!