Answer:
We need 3910.5 joules of energy
Explanation:
Step 1: Data given
Mass of aluminium = 110 grams
Initial temperature = 52.0 °C
Final temperature = 91.5 °C
Specific heat of aluminium = 0.900 J/g°C
Step 2: Calculate energy required
Q = m*c*ΔT
⇒with Q = the energy required = TO BE DETERMINED
⇒with m = the mass of aluminium = 110 grams
⇒with c = the specific heat of aluminium = 0.900 J/g°C
⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C
Q = 110 grams * 0.900 J/g°C * 39.5
Q = 3910.5 J
We need 3910.5 joules of energy
NaCl consists of a salt, which is a nonmetal (Na) and Cl, which is a metal. When a nonmetal and a metal are combined, it makes the compound ionic.
Answer:
Compound D is CH3OPO3 is the best answer
Explanation:
Answer:
The heat required to raise the temperature of 12g of water from 16 C to 21 C is 60 cal.
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q=?
- c= 4.186

- m= 12 g
- ΔT=Tfinal - Tinitial= 21 °C - 16°C= 5 °C
Replacing:
Q= 4.186
*12 g *5 °C
Solving:
Q=251.16 J
Since 1 J is equal to 0.2388 cal, then the following rule of three can be applied: if 1 J is equal to 0.2388 cal, then 251.16 J to how many cal are?

cal= 59.98 ≅ 60
<u><em>The heat required to raise the temperature of 12g of water from 16 C to 21 C is 60 cal.</em></u>