Answer: it would be a 1 to 1 ratio
Explanation: originally it would be 2 to 2 but you have to reduce
Answer:
The Phosphorylated glucose(glucose +inorganic phosphate), with the energy supplied from ATP hydrolysis formed glucose 6- phosphate, which is later converted to 2 molecules of fructose 6-phosphate- this is phosphorylation.And represented the fate of glucose -6-phosphate.
The fructose 6-phosphate are converted to triose phosphate- which is a 2-molecules of 3C compound. The latter is oxidized by NAD→ NADH+ to form intermediates in the glycolytic pathways .
These intermediates are converted to ribose 5-phosphates in the presence of transketolase and transaldolase enzymes.And they are finally converted to pyruvate in the glycolytic pathway with the production of 2ATPs per molecule of glucose.
Basically the phosphate pathway reaction is very slow due to enzyme catalysis.
Answer:
<h3>Sand cannot mixed on water not float on water .</h3>
<h3>When we mix sand and water , No reaction take place . The sand simply settles down at the bottom of the water container . This is why sand is heavier than water and therefore cannot float in water .</h3>
<h2>Hope this helps you ✌️</h2>
The ion is Al³⁺
mass number - number of neutrons= atomic number
27 - 14 = 13
Aluminum has an atomic number of 13, thus we know this is the metal in question. Also, because the aluminum has only 10 electrons, (3 less than a neutral atom of aluminum would have), its charge must be 3+
The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g