<h2>
Answer: 10615 nm</h2>
Explanation:
This problem can be solved by the Wien's displacement law, which relates the wavelength
where the intensity of the radiation is maximum (also called peak wavelength) with the temperature
of the black body.
In other words:
<em>There is an inverse relationship between the wavelength at which the emission peak of a blackbody occurs and its temperature.</em>
Being this expresed as:
(1)
Where:
is in Kelvin (K)
is the <u>wavelength of the emission peak</u> in meters (m).
is the <u>Wien constant</u>, whose value is 
From this we can deduce that the higher the black body temperature, the shorter the maximum wavelength of emission will be.
Now, let's apply equation (1), finding
:
(2)
Finally:
This is the peak wavelength for radiation from ice at 273 K, and corresponds to the<u> infrared.</u>
I think the correct answer from the choices listed above is option B. It is the electrons that flow because of electrical attraction and repulsion causes an electric current in a wire. Electrons, which continuously move in wire, are called Electric Current. Hope this answers the question.
Answer:
F=30N
a= 3m/s^2
m=?
F=ma
30=m(3)
30/3=m
m=10kg
The mass of the ball is 10kg
Answer:
Explanation:
In order to answer this question, we simply have to refer to the laws of the equations of gravitational mechanics.
The equation given by Newton tells us that

In the case where we compare a specific place where the Force of Gravity is greater or lesser, we focus on the term assigned to the Planet's Radius.
In the case of
, we understand that they are constant.
We can easily notice that the more the Radius (Height seen from a viewer on the ground), the lower the force will be.
In other words, the smaller the radius in which the measurement is made with respect to the center of the earth, the greater the gravitational force.
In that order of ideas the smallest radio has South Pole, which is about 6356 km from the center of the Earth on the Equator line