Answer:
d) 12 V
Explanation:
Due to the symmetry of the problem, the potential (relative to infinity) at the midpoint of the square, is the same for all charges, provided they be of the same magnitude and sign, and be located at one of the corners of the square.
We can apply the superposition principle (as the potential is linear with the charge) and calculating the total potential due to the 4 charges, just adding the potential due to any of them:
V = V(Q₁) + V(Q₂) +V(Q₃) + V(Q₄) = 4* 3.0 V = 12. 0 V
Answer:
77.96dB
Explanation:
Recall that decibels are a unit of measuring intensity of sound, and depend on the logarithm of the intensity
the intensity, measured in decibels is given by:
I(db)=10log(I/I0)
I is the intensity in MKS units; I0 is the threshold intensity for human hearing (10^-12 W/m^2)
Thus, if the two sounds together have a dB of 81, we know:
81=10log(I/I0)
using the data above, we can find the intensity of the two sounds to be
0.000125 W/m^2
therefore, one firecracker has an intensity half of that, or 0.0000625W/m^2
now use this value to find the dB of one firecracker:
I(dB0=10log(0.0000625/10^-12)=77.96dB
Answer:
0.7757 rev/s
Explanation:
d = Diameter of the tornado = 53 m
r = Radius of the tornado = 53/2 = 26.5 m
v = Velocity of wind = 465 km/h
Converting velocity to m/s

Angular velocity


∴ Angular velocity is 0.7757 rev/s
Answer:
α = -π/3 rad/s²
θ = 1.5π rad ≈ 4.71 rad
θ = 0.75 rev
Explanation:
30 rev/min (2π rad/rev) / (60 s/min) = π rad/s
α = (ωf - ωi) / t = (0 - π) / 3 = -π/3 rad/s²
θ = ½αt² = ½(π/3)3² = 1.5π rad ≈ 4.71 rad
θ = 1.5π rad / 2π rad/rev = 0.75 rev