Explanation:
To find the answer use the equation speed of light=wavelength multiplied by frequency (c=lambda*f) by substituting the value for the frequency the the speed of light
You don't convert kilograms to newtons. By the time you've heard of these units, you know that 'kilogram' is a unit of mass, 'newton' is a unit of force or weight, and that mass and weight are different things.
Mass and force are <u>related</u> by Newton's second law:
Force = Mass x acceleration .
From this simple formula, you can see that in order to relate a mass to a force, you need to know an acceleration. And if the acceleration changes, then the relationship between the force and the mass also changes. So there's no direct conversion.
ON EARTH ONLY, one kilogram of mass <em>weighs</em> 9.8 newtons. The acceleration that connects them is the acceleration of gravity on Earth. In other places, with different gravitational accelerations, 1 kilogram weighs more or less newtons.
But they don't convert directly. That would be like asking "How do you convert miles to miles-per-hour ?"
Answer:
it can kill you cell and win you kill you no cell no life
Explanation:
Choice-'a' is a slippery, misleading, ambiguous statement,
but it's less wrong than any of the other choices on this list.
Assume no air resistance, and g = 9.8 m/s².
Let
x = angle that the initial velocity makes with the horizontal.
u = 30 cos(x), horizontal velocity
v = 30 sin(x), vertical launch velocity
The horizontal distance traveled is 55 m, therefore the time of flight is
t = 55/[30 cos(x)] = 1.8333 sec(x) s
With regard to the vertical velocity, and the time of flight,obtain
[30 sin(x)]*(1.8333 sec(x)) + (1/2)*(-9.8)*(1.8333 sec(x))² = 0
55 tan(x) - 16.469 sec²x = 0
55 tan(x) - 16.469[1 + tan²x] = 0
16.469 tan²x - 55 tan(x) + 16.469 = 0
tan²x - 3.3396 tan(x) + 1 = 0
Solve with the quadratic formula.
tan(x) = 0.5[3.3396 +/- √(7.153)] = 3.007 or 0.3326
Therefore
x = 71.6° or x = 18.4°
The time of flight is
t = 1.8333 sec(x) = 5.8096 s or 1.932 s
The initial vertical velocity is
v = 30 sin(x) = 28.467 m/s or 9.468 m/s
The horizontal velocity is
u = 30 cos(x) = 9.467 m/s or 28.469 m/s
If t = 5.8096 s,
u*t = 9.467*5.8096 = 55 m (Correct)
or
u*t = 28.469*15.8096 = 165.4 m (Incorrect)
Therefore, reject x = 18.4°. The correct solution is
t = 5.8096 s
x = 71.6°
u = 9.467 m/s
v = 28.467 m/s
The height from which the ball was thrown is
h = 28.467*5.8096 - 0.5*9.8*5.8096² = -110.4 m
The ball was thrown from a height of 110.4 m
Answer: h = 110.4 m