Answer:
What is the centripetal acceleration of the tip of the fan blade?
6.0 m/s2
48 m/s2
53 m/s2
96 m/s2
Answer is 96
Explanation:
Answer:
The coefficient of static friction between the coin and the turntable is 0.51
Explanation:
at the time of the slip:
centripetal force = frictional force
mv^2/r = x*m*980
v^2/r = 980x
x = v^2/980r
= [(120)^2]/[980*29]
= 0.51
Therefore, The coefficient of static friction between the coin and the turntable is 0.51
Answer: To solve for the net magnetic field of two circular loops of wire, each containing a single turn
B net= √[( NUI / 2R)^2 × ( NUI / 2R)^2]
Where B net = Net magnetic field
B net = √2 × (NUI/ 2R)
B net =[ √2 × 1 × ( 4 × 3.142 × 10^-7) × (1.8)] ÷ 2 × 0.034
B net = { 1.414 × (0.00000126) × (1.8)}÷ 0.068
B net = 4.72 × 10^-5 T
Answer:

Explanation:
Potential Energy= Kinetic Energy
Let
be the value of Kinetic Energy.
We know that

Make
the subject of the formula to get speed at the bottom of the hill.

Due to influx of potassium ions, electricity is generated in axon of a neuron.
<u>Explanation:</u>
Axon membrane is the semi permeable membrane that is full of potassium and sodium channels. There’s also Sodium Potassium ATPase pumps. When there’s an impulse coming through the synapse, the potassium channels open. This leads to influx of sodium from outside the membrane to inside it. Then the membrane becomes positive.
Then the electricity is generated and its conducted from one part to another. After the impulse is conducted, the sodium potassium pumps come in action which transports 3 sodium inside and 2 potassium outside in consumption to an ATP.