<span>there is no answer so i think it should be -ate. not sure tho without the options
</span>
Answer:
21.344%
Explanation:
For the given chemical reaction, 8 moles of the reactant should produce 4 moles of
. However, 195 g of
was produced instead. The molar mass of
is 61.9789 g/mol.
Thus, the moles of
produced = 195/61.9789 = 3.1462 moles
The percent error = [(Actual -Experiment)/Actual]*100%
The percent error = [(4.00 - 3.1462)/4.00]*100% = (0.85376/4.00)*100% = 21.344%
I don’t have a picture but I can describe it to you.
The hydrogen that is attached at the tertiary position on the heptatriene (at the 7-methyl) would be very acidic, as removal would leave a positive charge that could be moved throughout the ring through resonance. This would mean that the three double bonds would be participating in resonance, and the deprotonated structure would be aromatic, thus making this favorable.
The hydrogen that is attached at the tertiary position on the pentadiene (5-methyl) would NOT be acidic, as removal would cause an antiaromatic structure.
Any other hydrogens would NOT be acidic. Those vinylic to their respective double bonds would seriously destabilize the double bond if removed, and hydrogens attached to the methyl group jutting off the ring have no incentive to leave the carbon.
Hope this helps!