Answer:
Mole fraction for solute = 0.1, or 10%
Molality = 6.24 mol/kg
Explanation:
22.3% by mass → In 100 g of solution, we have 22.3 g of HCOOH
Mass of solution = 100 g
Mass of solute = 22.3 g
Mass of solvent = 100 g - 22.3g = 77.7 g
Let's convert the mass to moles
22.3 g . 1mol/ 46 g = 0.485 moles
77.7 g. 1mol / 18 g = 4.32 moles
Total moles = 4.32 moles + 0.485 moles = 4.805 moles
Xm for solute = 0.485 / 4.805 = 0.100 → 10%
Molality → mol/ kg → we convert the mass of solvent to kg
77.7 g. 1 kg / 1000g = 0.0777 kg
0.485 mol / 0.0777 kg = 6.24 m
<span>A full valence electron shell.</span>
Often, the rock layers bookending the mass extinction are noticeably different in their compositions. These changes in the rocks show the effects of environmental disturbances that triggered the mass extinction and sometimes hint at the catastrophic cause of the extinction