Answer:

Step-by-step explanation:
GIVEN: A farmer has
of fencing to construct a rectangular pen up against the straight side of a barn, using the barn for one side of the pen. The length of the barn is
.
TO FIND: Determine the dimensions of the rectangle of maximum area that can be enclosed under these conditions.
SOLUTION:
Let the length of rectangle be
and
perimeter of rectangular pen 


area of rectangular pen 

putting value of 


to maximize 



but the dimensions must be lesser or equal to than that of barn.
therefore maximum length rectangular pen 
width of rectangular pen 
Maximum area of rectangular pen 
Hence maximum area of rectangular pen is
and dimensions are 
5.00 is the answer! It is very close to 5 therefore it would immediately go to 5!
ANSWER : QR is the answer
Factor the coefficients:
-12=(-1)(3)(2^2)
-9=(-1)(3^2)
3=3
The greatest common factor (GCF) is 3
Next we find the GCF for the variable x.
x^4
x^3
x^2
The GCF is x^2.
Next GCF for variable y.
y
y^2
y^3
the GCF is y
Therefore the GCF is 3x^2y
To factor this out, we need to divide each term by the GCF,
(3x^2y)(−12x4y/(3x^2y) − 9x3y2/(3x^2y) + 3x2y3/(3x^2y) )
=(3x^2y)(-4x^2-3xy+y^2)
if we wish, we can factor further:
(3x^2y)(y-4x)(x+y)
Answer:
A. Decreasing linear
Step-by-step explanation: