Ans 1. Both
Ans 2. Once inside plants, carbon moves through food chains, where organisms become nutrients including herbivores, carnivores and ultimately, decomposers. Once buried in the soil, carbon can be converted into fossil fuels over long periods of time and then also reenter the atmosphere by combustion. The Law of Conservation of Matter states that matter cannot be created or destroyed. The carbon cycle is an example of the Law
Ans 3. Most of the chemical energy needed for life is stored in organic compounds as bonds between carbon atoms and other atoms. The law of conservation of energy states that energy can not be created or destroyed. Thus, just like matter energy is also conserved in the process.
Hope it helps
Answer:
A. Substance E
A. Substance C
A. Substance A
Explanation:
Given that:
At 4 °C, Substance E has a vapor pressure of 86. torr and Substance F has a vapor pressure of 136. torr
Which has a higher boiling point?
A. Substance E
B. Substance F
C. Neither,EandF have the same boiling point
The vapor pressure varies inversely proportional to the boiling point.

Therefore, the lower the vapor pressure, the higher the boiling point.
At 4°C, Substance E with a lower vapor pressure of 86. torr will have a higher boiling point from the given information.
2.
Recall that :

therefore, the lower the enthalpy of vaporization, the higher the vapor pressure at any given temperature.
Given that:
Substance C has an enthalpy of vaporization smaller than that of substance D. Then, substance C has a higher vapor pressure.
3.
We've earlier said that:
The vapor pressure varies inversely proportional to the boiling point.

Therefore, the lower the vapor pressure, the higher the boiling point.
As such, Substance A will have a higher boiling point.
a)
26C5 -> 26 choices of 5 things
b)
15C1 × 11C4
c)
11C1 × 15C4
d)
11C2 × 15C2
e)
11C4
or
15C4
The force of the swing.
Hoped I helped, and please tell me if I am wrong.
The maximum amount of hydrogen gas that can be prepared is if all the hydrogen from both compounds is released.
The hydrogen in 4.94 g of SrH2 is calculated from the mass ratios between Sr and H
1) H2 in SrH2
Sr atomic mass = 87.62 g/mol
H2 molar mass = 2.02 g/mol
Mass of 1 mol of SrH2 = 87.62 g / mol + 2.02 g/mol = 89.64 g/mol
Ratio of H2 to SrH2 = 2.02 g H2 / 89.64 g SrH2
Proportion: 2.02 g H2 / 89.64 gSrH2 = x / 4.93 g SrH2
=> x = 4.93 g SrH2 * 2.02 g H2 / 89.64 g SrH2 = 0.111 g H2
2) H2 in H2O
2.02 g H2 / 18.02 g H2O * 4.14 g H2O = 0.464 g H2
3) Total mass of hydrogen = 0.111 g + 0.464 g = 0.575 g
Answer: 0.575 g