Answer:
The smell of a chocolate is from the presence of volatile compounds present in the chocolate bar which at room temperature readily changes phase from solid to liquid to vapor or gas
Explanation:
There are nearly 600 identified compounds present in a chocolate bar and out of these, there are volatile components which gives the chocolate bar its distinctive aroma.
These volatile chocolate contents readily change phase from solid to vapor, with very short duration liquid phase.
For example, 3 methylbutanal, vanillin, and several organic compounds which are known to be readily volatile.
Use PV = nRT
(2 atm)(.3 liters) = n(8.314 mol*K)(303°K)
.6 = n(2519.142)
Divide by 2519.142
n = .00023818 mols of HCl * 36.46g of HCl/ 1 mol of HCl
Grams of HCl = 0.00868
Answer:
The rate would be lower and the concentration of reactants would be lower.
Explanation:
The rate of a chemical reaction depends on the rate constant and the concentration of reactants.
For Ex:
For a reaction experimentally given by A + B ----> C + D
Rate = k[A][B]
where k is the rate constant
[A] = concentration of reactant A
[B] = concentration of reactant B
As the reaction proceeds,the concentration of reactant decrease and concentration of products increase.Rate constant k depends only on temperature and activation energy.Hence it will remain constant throughout the reaction assuming that reaction is carried out at constant temperature and pressure.
Hence rate will depend only on concentration of reactants and hence decrease with decrease in concentration of reactants.
Answer:
The correct answers are: <u>Each oxygen of carbonate ion has -2/3 or -0.67 charge.</u>
<u>Bond order of each carbon‑oxygen bond in the carbonate ion</u> = <u>1.33</u>
Explanation:
The carbonate ion (CO₃²⁻) is an organic compound, in which a carbon atom is covalently bonded to three oxygen atoms. The net formal charge on a carbonate ion is −2.
The carbonate ion is <u>resonance stabilized</u> and has three equivalent resonating structures, which exhibits that all the three carbon-oxygen bonds in a carbonate ion are equivalent.
In the resonance hybrid of carbonate ion,<u> the negative charge is equally delocalized on all the three oxygen atoms. </u>
<u>Thus, each bonded oxygen has -2/3 or -0.67 charge.</u>
<u />
In a carbonate ion there is one double bond oxygen (C=O) and two single bonded oxygen (C-O). Bond order of 1 C=O is 2 and bond order of C-O is 1.
∴ <u>Bond order</u> = sum of all bond orders ÷ number of bonding groups = (2+1+1) ÷ 3 = <u>1.33</u>