To determine the centroid, we use the equations:
x⁻ =
1/A (∫ (x dA))
y⁻ = 1/A (∫ (y dA))
First, we evaluate the value of A and dA as follows:
A = ∫dA
A = ∫ydx
A = ∫3x^2 dx
A = 3x^3 / 3 from 0 to 4
A = x^3 from 0 to 4
A = 64
We use the equations for the centroid,
x⁻ = 1/A (∫ (x dA))
x⁻ = 1/64 (∫ (x (3x^2 dx)))
x⁻ = 1/64 (∫ (3x^3 dx)
x⁻ = 1/64 (3 x^4 / 4) from 0 to 4
x⁻ = 1/64 (192) = 3
y⁻ = 1/A (∫ (y dA))
y⁻ = 1/64 (∫ (3x^2 (3x^2 dx)))
y⁻ = 1/64 (∫ (9x^4 dx)
y⁻ = 1/64 (9x^5 / 5) from 0 to 4
y⁻ = 1/64 (9216/5) = 144/5
The centroid of the curve is found at (3, 144/5).
Answer:
A. is ur answer
Step-by-step explanation:
Sorry if im wrong
Answer:
$2160
Step-by-step explanation:
=PRN
6000×0.12×3
Answer:
C
Step-by-step explanation:
In space you have to exercise 24/7, because if you don't your bones will decay little by little, the same goes for earth, it is a condition that happens if you don't move or exercise.
If possible; can I get brainliest, I mean if it's correct
THE ANSWER IS EQUILATERAL BECAUSE THEY ALL HAVE EQUAL SIDES