Yes because if they are further away it makes it hard for them to attract each other
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds.
</span>
The work done on the ship is 
Explanation:
The work done by a force on an object is given by:
where
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and of the displacement
In this problem, we have:
(force acting on the ship)
d = 3.00 km = 3000 m (displacement of the ship)
(because the force is horizontal, and the displacement is horizontal as well)
Therefore, the work done on the ship is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer: The Electrostatic force of attraction or repulsion between two charges shows that the Newton's third law applies to electrostatic forces.
Explanation: Consider two Oppositely charged charges separated by distance d.
The electrostatic force exerted by charge 1 on charge 2 is.
By Coulomb's Law :
F1 = k
.....................................(1)
The electrostatic force exerted by charge 2 on charge 1 is.
F2 = - k
................................. (2)
negative sign shows that force are in opposite direction.
From Equation 1 and 2
F1 = - F2
Which implies Newton Third law.