1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
12

A balloon is filled with water. The balloon is heated and begins to expand. The water inside begins to turn into steam. What wil

l happen to the mass of the balloon?
Physics
2 answers:
tino4ka555 [31]3 years ago
6 0

Explanation:

The kinetic energy of the particles is directly proportional to the temperature.

In the given problem, a balloon is filled with water. It is heated then it begins to expand. As the water gains energy the particles of the water moves more freely inside the balloon. The water inside balloon turns into steam. Then, the particles of the water collide with the walls of the balloon and create pressure on the walls of the balloon.

The volume of the balloon will expand in this case.

umka21 [38]3 years ago
4 0
The stuff in the balloon changes temperature, then changes state and changes volume. But the amount of mass in the balloon stays constant.
You might be interested in
Kim throws a beach ball up in the air. It reaches its maximum height 0.50s later. We can ignore air resistance. What was the bea
notka56 [123]

Answer:

The beach ball's velocity at the moment it was tossed into the air is <u>4.9 m/s.</u>

Explanation:

Given:

Time taken by the ball to reach maximum height is, t=0.50\ s

We know that, velocity of an object at the highest point is always zero. So, final velocity of the ball is, v=0\ m/s

Also, acceleration acting on the ball is always due to gravity. So, acceleration of the ball is, a=g=-9.8\ m/s^2

The negative sign is used as acceleration is a vector and it acts in the downward direction.

Now, we have the equation of motion relating initial velocity, final velocity, acceleration and time given as:

v=u+at

Where, 'u' is the initial velocity.

Plug in the given values and solve for 'u'. This gives,

0=u-9.8(0.5)\\u=9.8\times 0.5\\u=4.9\ m/s

Therefore, the beach ball's velocity at the moment it was tossed into the air is 4.9 m/s

3 0
3 years ago
Read 2 more answers
3. What is the main difference between a physical change and a chemical
Lana71 [14]

Answer:

B and D could both be right as they are quit similar.

Consider two rods of the same length and diameter,

Increasing the diameter of one would change the expansion qualities of that rod even though there would be no chemical changes,

However, leaving the physical appearance of both rods the same while applying a reactive substance (acid or something) to one of the rods would not necessarily change the physical appearance of that rod but could make a considerable change in the  physical properties of that rod.

3 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
What's the difference between electromagnetic waves and electromagnetic spectrum?
White raven [17]
The difference between the two is, well for one

Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.

Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.

<em>It may confuse you but it makes sense to me (Sorry)</em>
4 0
3 years ago
Two astronauts are 2.00 m apart in their spaceship. One speaks to the other. The conversation is transmitted to earth via electr
Eduardwww [97]

Answer:

D=1693742.7m

Explanation:

For sound waves we have v=d/t where v is the speed of sound and d the distance between the astronauts, while for electromagnetic waves we have c=D/t where c is the speed of light and D the distance between the spaceship and Earth. <em>We have written both times as the same</em> because is what is imposed by the problem, so we have t=d/v=D/c, which means:

D=\frac{dc}{v}

And for our values:

D=\frac{(2m)(299792458m/s)}{354m/s}=1693742.7m

5 0
3 years ago
Other questions:
  • Which of the following equations describe the 2nd law of motion?
    12·2 answers
  • Which changes will decrease the electric force between two positively charged objects? Check all that apply.
    13·2 answers
  • How do scientists learn about the brain.
    15·2 answers
  • A 4.2 kg parachutist is moving straight downward with a speed of 3.85 m/s
    8·1 answer
  • Why would the time of flight depend on the angle of the launch
    10·1 answer
  • In Which figure below is the trend line drawn correctly
    5·1 answer
  • Kinetic Energy Assignment: Lab Report
    13·1 answer
  • Charges q1 and q2 exerts repulsive forces of 10N on each other what is the repulsive force when their separation is decreasing s
    5·1 answer
  • A system gains 767 kJ of heat, resulting in a change in internal energy of the system equal to +151 kJ. How much work is done?
    10·1 answer
  • A snail crawls 300 cm in 1 hour. Calculate the snail's speed in each of the following units. a. centimeters per hour (cm/h) b. c
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!