(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
If the wishing well was in a vacuum, then s=ut + 0.5 a t^2 (s=distance, ... wishing well if you drop a coin into it and hear the splash 10 seconds
Explanation:
Assuming that the box is moving when it is being pulled, Work is done on the box.
So work is the Force times the distance
W=Fd
But what is work actually ? When something moves due to force over some change in distance, it have energy.
But where does this energy come from ? Does it magically appear ? The energy comes from the applied force onto the box.
So the energy have been transferred. And it’s like that throughout the universe
Now to save time, I’ll just tell you the answer: kinetic energy
:)
Climate is a particular place's distance from the equator
Answer:
im pretty sure it is C. Insulation
Explanation:
because it says reduced, and basically ur insulating the fire.