Answer:
I think its distance
Explanation:
when measuring how far a p.o art u can use mm
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. To determine acceleration, we need to know the initial velocity and the final velocity and the time elapsed. From the given values, we need t o calculate for the initial velocity. We use some kinematic equations. We do as follows:
x = v0t + at^2/2
60 = v0(6) + a(6)^2/2
60 = 6v0 + 18a (EQUATION 1)
vf = v0 + at
15 = v0 + a(6)
15 = v0 + 6a (EQUATION 2)
Solving for v0 and a,
v0 = 5 m/s
a = 1.7 m/s^2
Answer:
Volt
Explanation:
Voltage is what makes electric charges move. ... Voltage is also called, in certain circumstances, electromotive force (EMF). Voltage is an electrical potential difference, the difference in electric potential between two places. The unit for electrical potential difference, or voltage, is the volt.
The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.
The coulomb (symbolized C) is the standard unit of electric charge in the International System of Units (SI). ... In terms of SI base units, the coulomb is the equivalent of one ampere-second. Conversely, an electric current of A represents 1 C of unit electric charge carriers flowing past a specific point in 1 s.
An ampere is a unit of measure of the rate of electron flow or current in an electrical conductor. One ampere of current represents one coulomb of electrical charge (6.24 x 1018 charge carriers) moving past a specific point in one second.
Answer:
1.19 hours
Explanation:
divide distance by speed. hope this helps
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds