1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krek1111 [17]
2 years ago
9

Calcula el valor de la velocidad de las ondas sonoras en el agua sabiendo que su

Physics
1 answer:
dybincka [34]2 years ago
6 0
  1. La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
  2. La longitud de onda de las ondas sonoras es 1,470 metros.

1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (v), en metros por segundo:

v = \sqrt{\frac{K}{\rho} } (1)

Donde:

  • K - Módulo de compresibilidad, en newtons por metro cuadrado.
  • \rho - Densidad del agua, en kilogramos por metro cúbico.

Si sabemos que \rho = 1\times 10^{3}\,\frac{kg}{m^{3}} y K = 2,16\times 10^{9}\,\frac{N}{m^{2}}, entonces la velocidad de las ondas sonoras es:

v = \sqrt{\frac{2,16\times 10^{9}\,\frac{N}{m^{2}}}{1\times 10^{3}\,\frac{kg}{m^{3}} } }

v\approx 1469,694\,\frac{m}{s}

La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.

2) Luego, determinamos la longitud de onda (\lambda), en metros, mediante la siguiente fórmula:

\lambda = \frac{v}{f} (2)

Donde f es la frecuencia de las ondas sonoras, en hertz.

Si sabemos que v\approx 1469,694\,\frac{m}{s} y f = 1000\,hz, entonces la longitud de onda de las ondas sonoras es:

\lambda = \frac{1469,694\,\frac{m}{s} }{1000\,hz}

\lambda = 1,470\,m

La longitud de onda de las ondas sonoras es 1,470 metros.

Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238

You might be interested in
A truck pushes a pile of dirt horizontally on a frictionless road with a net force of 20\, \text N20N20, start text, N, end text
meriva

Answer:

300 Nm ; 300 J

Explanation:

Given that:

Force (F) = 20 N

Distance (d) = 15 m

The kinetic energy (Workdone) = Force * Distance

Kinetic Energy = 20N * 15m

Kinetic Energy = 300Nm

K. E = 1/2

4 0
3 years ago
Read 2 more answers
How does your body’s flexibility naturally change as you age?
chubhunter [2.5K]
<span>Your flexibility decreases.  But if you exercise or stretch a few times a  week you can slow down the process </span>
7 0
3 years ago
Read 2 more answers
A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.1 m/s. How long does h
balandron [24]
We need to use the kinematic equation
S=ut+(1/2)at^2
where
S=displacement (+=up, in metres)
u=initial velocity (m/s)
t=time (seconds)
a=acceleration (+=up, in m/s^2)

Substitute values
S=displacement = 1.96-2.27 = -0.31 m (so that shot does not hit his head)
u=11.1
a=-9.81 (acceleration due to gravity)

-0.31=11.1t+(1/2)(-9.81)t^2
Rearrange and solve for t
-4.905t^2+11.1t-0.31=0
t=-0.02756 or t=2.291 seconds 
Reject the negative root to give
t=2.29 seconds (to 3 significant figures)

3 0
3 years ago
For the simple harmonic motion equation
My name is Ann [436]
Given that : d = 5sin(pi t/4), So, maximum displacement, d = 5*(+1) = 5 Also, maximum displacement, d = 5*(-1) = -5 
3 0
3 years ago
*A car is going through a dip in the road whose curvature approximates a circle of radius 150m. At what velocity will the occupa
Valentin [98]

Answer:

v= 14.85 m/s

Explanation:

  • When at the bottom of the dip, the only force that keeps the car in the circular trajectory, is the centripetal force.
  • This force is not a new force, is just the net force aiming to the center of the circle.
  • In this case, is just the difference between the normal force (always perpendicular to the surface, pointing upward) and the force that gravity exerts on the car (which is known as the weight), pointing downward.
  • So, we can write the following expression:

       F_{cent} = F_{n} - F_{g}  (1)

  • It can be showed that the centripetal force is related to the speed by the following expression:
  • F_{cent} = m*\frac{v^{2}}{r} (2)
  • The normal force, it is called the apparent weight, because it would be the weight as measured by a scale.
  • Replacing (2) in (1), and solving for Fn, we get:

       F_{n} = m*\frac{v^{2} }{r} + m*g (3)

  • Now, we need to find the value of v that makes Fn, exactly 15% more than the weight m*g, so we can write the following equation:

      F_{n} = 1.15*F_{g} = m*\frac{v^{2}}{r} +F_{g}  (4)

  • Replacing Fg by its value, simplifying, and solving for v, we get:

       v = \sqrt{0.15*g*r} = \sqrt{9.8 m/s2*0.15*150m} = 14.85 m/s (5)

3 0
2 years ago
Other questions:
  • What is diffraction?
    15·1 answer
  • Please answer these!
    5·1 answer
  • certification programs are available at all of the following except A. online schools B. vocational school C. community colleges
    8·2 answers
  • What is the acceleration of this object? The object's mass is 60 kg.
    13·2 answers
  • Gravitational Force
    14·1 answer
  • If you are driving 128.4 km/h along a straight road and you look down for 3.0s, how far do you travel during this inattentive pe
    7·1 answer
  • 8. Main Idea How do animals reproduce?
    5·2 answers
  • A bus traveled down Interstate 35 at a speed of 75 km/h for 4 hours. How many kilometers was the bus speeding?
    7·1 answer
  • 2. If the ball has a velocity of 2.3 m/s, how long does it take it to go 1.1 m?<br> s
    5·1 answer
  • Р.ЗА.3
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!