Answer:
The law of refraction states that the incident ray, the refracted ray, and the normal to the interface, all lie in the same plane.
Explanation:
Assuming you're working in a 3D cartesian coordinate system, i.e. each point in space has an x, y, and z coordinate, you add up the forces' x/y/z components to find the resultant force.
The potential difference,electric current ,resistance and new electric current will be 12 V,4 A,3 Ω,2 A.
<h3>What is resistance?</h3>
Resistance is a type of opposition force due to which the flow of current is reduced in the material or wire. Resistance is the enemy of the flow of current.
The energy in terms of the charge and potential difference is;
E= qV
60=5 C × V
V= 12 V
The electric current is found as;

From the ohm's law;
V=IR
12=4 ×R
R=3Ω
If the voltage is constant and the resistance is doubled, then the new electric current is half of the previous condition;

Hence, the potential difference,electric current ,resistance and new electric current will be 12 V,4 A,3 Ω,2 A.
To learn more about the resistance, refer to the link;
brainly.com/question/20708652
#SPJ1
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg
The directions of magnetic force and magnetic field lines are shown in the figure.
The direction to find out the magnetic field lines is given by right hand curl rule. If the thumb shows the direction of current, then the curling fingers show the direction of magnetic field lines.
The direction of force can be given by right hand thumb rule, where
Thumb - Direction of magnetic field lines
Forefinger - Magnetic
force
Centre finger -
Current
Such that forefinger, centre finger and thumb must be at 90 degrees to each other.