a. Length of the fence around the field = perimeter of quarter circle = 892.7 ft.
b. The area of the outfield is about 39,584 sq. ft..
<h3>What is the Perimeter of a Quarter Circle?</h3>
Perimeter of circle = 2πr
Perimeter of a quarter circle = 2r + 1/4(2πr).
a. The length of the fence around the field = perimeter of the quarter circle fence
= 2r + 1/4(2πr).
r = 250 ft
Plug in the value
The length of the fence around the field = 2(250) + 1/4(2 × π × 250)
= 892.7 ft.
b. Size of the outfield = area of the full field (quarter circle) - area of the infield (cicle)
= 1/4(πR²) - πr²
R = radius of the full field = 250 ft
r = radius of the infield = 110/2 = 55 ft
Plug in the values
Size of the outfield = 1/4(π × 250²) - π × 55²
= 49,087 - 9,503
= 39,584 sq. ft.
Learn more about perimeter of quarter circle on:
brainly.com/question/15976233
Answer:
No
Step-by-step explanation:
Rule: If x-k is a factor of p(x), then p(k) = 0. This is a special case of the remainder theorem.
Using that rule, we can see that x+5 is really x-(-5) so k = -5.
Therefore,
p(k) = 0
p(-5) = 0
so the answer is choice D.
Answer:yes 2.324324 is a rational number
Step-by-step explanation: