1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
15

What is the exterior angle?

Mathematics
1 answer:
Mademuasel [1]3 years ago
7 0

The value of x° is 22° and exterior angle is 25.

Step-by-step explanation:

l can prove like this,

Here,2x°+(103-x)°=(6x-7)°...Being exterior angle

or,2x°+103°-x°=6x°-7°

or,x°+103°=6x°-7°

or,103°+7°=6x°-7°

or,5x°=110°

or,x°=110°÷5=22°

Now,

x°=22°

(6x-7)°=(6×22-7)°=125°

You might be interested in
Help mee pweaseeeeeee :)))
Ilya [14]

Answer: .4

Step-by-step explanation:

.

3 0
3 years ago
Explain how you can use strategy guess check and revise to solve problems that involve a given area when the relationship betwee
Aleksandr-060686 [28]
You can try finding numbers that are close to what you think you can use for exaple lets say we want to find the answer to 54x34 you could multiply 50x30 to get an estimated answer
3 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Which type of rigid transformation is shown?<br><br> reflection<br><br> rotation<br><br> translation
Sever21 [200]

C: translation

i seen there wasn't any answer so i decided to get it wrong for the good people that use brainly i got you guys

4 0
3 years ago
Read 2 more answers
Nine more than half of a number is 21
pogonyaev
I assume you're looking for the number:
0.5n + 9 = 21
- 9
0.5n = 12
÷ 0.5
n = 24
So the beginning number is 24, hope this helps!
3 0
3 years ago
Other questions:
  • 4.9, 5.7, 6.0, 5.3, 4.8, 4.9, 5.3, 4.7, 4.9, 5.6, 5.1<br> whats the mean
    10·2 answers
  • What is the length of BC¯¯¯¯¯ ? Enter your answer in the box. units Triangle A B C with horizontal side B C. Vertex A lies above
    6·1 answer
  • Find the y intercepts of 3x^2+24x-51. quadratic formula
    5·1 answer
  • I have no clue how to get the answer for this
    11·1 answer
  • Which is equivalent to "12 chars for every 3 tables"?
    10·2 answers
  • 50 POINTS!!! Please give an explanation and answer to this word problem. I am not just giving you 50 points for an answer!
    7·2 answers
  • I am so confused can someone please help me :)
    11·2 answers
  • A rectangular field has a length of x metres.
    14·1 answer
  • If grades are weighted 60% tests, 20% quizzes and 20% final exam... What is your course grade if you have a 75 test average, a 8
    9·1 answer
  • Angela is making 25 sundaes with mint, chocolate, and vanilla ice cream. 3 5 of the sundaes are mint ice cream and 1 2 of the re
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!