Answer:
810 mA
Explanation:
In a series circuit, the current is the same through the system, so if the current through one resistor is 810 mA, the current supplied by the source will be 810 mA.
So, the answer is 810 mA
Important bc it makes it more effective, the specific rate makes or breaks the fitness. Frequency is important to allow your body to rebuild and repair the damage from working out, it allows the body to adapt and time for rest/ healing. Intensity depends on how much your body breaks so the recover time and frequency must be adjusted. Time effects because of the distance between frequencies which plays a role.
Answer: Decreasing the distance of the space shuttle from Earth .
Explanation:
According to expression of gravitational force:

G = gravitational constant
= masses of two objects
r = Distance between the two objects.
F = Gravitational force
From the above expression we can say that gravitational force is inversely proportional to squared of the distance between the two masses.

So, in order to increase the gravitational force on space shuttle distance between the space space shuttle must be decreased.
Hence, the correct answer 'decreasing the distance of the space shuttle from Earth '.
Answer:
B
Explanation:
this is because the neutrons do not have a charge, the things that have charge in an atom are electrons and protons.
and in the nucleus of an atom, there are protons and neutrons so you can see that A is not the answer
if you see the periodic table, you will know that the number of electrons and protons are equal, so the charges cancel each other out, hence the charge of an atom will be neutral
let me give you a tip which I got from my teacher, never write there is no charge in the atom, this suggests that there is no protons or electrons.
instead, write, the it is neutral
hope it helps if not please report it so that someone else gets to try it out
Answer:
b. The normal force between the molecules of the paper is overcome by the contact force of the hands.
Explanation:
The paper molecules are held together by a weak bond. When the student holds the paper on both sides with the center of the paper in between, the student applies two equal forces in the opposite direction of the paper making the paper molecules weaken and separate.