Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
12.5 times 14 and convert to meters its 1.75 meters per second
Answer:
when you tell someone over and over to stop bothering you and they dont so i think you should tell a teacher
Explanation:
Answer:
Therefore, we need an invert, and a rectifier, along with the transformer to do the job.
Explanation:
A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.
Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.
So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.
<u>Therefore, we need an invert, and a rectifier, along with the transformer to do the job.</u>
The best option is C. This is due to friction.