I think this type of equation could be conducted in simple division equation since it does not involve drop rate.
we know that there is 500 ml of substance and should be infused within 8 hours period.
So the flow rate in ml/hr would be:
500/8 = 62.5 ml/hr
If f=140hz
speed=?
wavelength=?
without all information given, it would be difficult to answer but the formula is speed=frequency ×wavelength
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>