The direction of its displacement wil be
c.northeast
In fact, the dog walks north for 10 meters and east for another 10 meters. The path of the dog can be represented with two vectors, A pointing north (of magnitude 10 meters) and B pointing east (of magnitude 10 meters). The direction of the resultant vector (due to east) will be given by


and the direction will be north-east.
A type O star is likely to appear blue.
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Given:
Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min
Required:
Inlet flowrate
Solution:
The problem can be solved by this general formula.
Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
First, we need to convert the units of the accumulation velocity into m/s to be consistent.
Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s
We then calculate the area of the pool and the area of the orifice by:
Area of pool = 3 × 4 m²
Area of pool = 12m²
Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²
Since we have all we need, we plug in the values to the general equation earlier
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²
Transposing terms,
Inlet flowrate = 0.316 m³/s