Answer: Visible light makes up just a small part of the full electromagnetic spectrum. Electromagnetic waves with shorter wavelengths and higher frequencies include ultraviolet light, X-rays, and gamma rays.
Let us examine the given situations one at a time.
Case a. A 200-pound barbell is held over your head.
The barbell is in static equilibrium because it is not moving.
Answer: STATIC EQUILIBRIUM
Case b. A girder is being lifted at a constant speed by a crane.
The girder is moving, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case c: A jet plane has reached its cruising speed at an altitude.
The plane is moving at cruising speed, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case d: A box in the back of a truck doesn't slide as the truck stops.
The box does not slide because the frictional force between the box and the floor of the truck balances out the inertial force. The box is in static equilibrium.
Answer: STATIC EQUILIBRIUM
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
W₂= 10000 N
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:
Pressure is defined as the force (F) applied per unit area (A)
P=F/A (N/m²)
P1=P2
Equation (1)
Data
W₁ = weight sits on the small piston
F₁ = W₁= 500 N
A₁ = 2.0 cm²
A₂ = 40 cm²
Calculation of the weight (W₂) can the large piston support
We replace data in the equation (1)
F₂ = 10000 N
W₂= F₂= 10000 N