Answer:
Shiny metals such as copper, silver, and gold are often used for decorative arts, jewelry, and coins.
Strong metals such as iron and metal alloys such as stainless steel are used to build structures, ships, and vehicles including cars, trains, and trucks.
Some metals have specific qualities that dictate their use. For example, copper is a good choice for wiring because it is particularly good at conducting electricity. Tungsten is used for the filaments of light bulbs because it glows white-hot without melting.
Nonmetals are plentiful and useful. These are among the most commonly used:
Oxygen, a gas, is absolutely essential to human life. Not only do we breathe it and use it for medical purposes, but we also use it as an important element in combustion.
Sulfur is valued for its medical properties and as an important ingredient in many chemical solutions. Sulfuric acid is an important tool for industry, used in batteries and manufacturing.
Chlorine is a powerful disinfectant. It is used to purify water for drinking and fill swimming pools.
Explanation:
Answer:
a) 75.5 degree relative to the North in north-west direction
b) 309.84 km/h
Explanation:
a)If the pilot wants to fly due west while there's wind of 80km/h due south. The north-component of the airplane velocity relative to the air must be equal to the wind speed to the south, 80km/h in order to counter balance it
So the pilot should head to the West-North direction at an angle of

relative to the North-bound.
b) As the North component of the airplane velocity cancel out the wind south-bound speed. The speed of the plane over the ground would be the West component of the airplane velocity, which is

C. Members of the same species work together for survival
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
A
method of procedure that has characterized natural science since the
17th century, consisting in systematic observation, measurement, and
experiment, and the formulation, testing, and modification of
hypotheses