This problem is an example of solving equations with variables on both sides. To solve, we must first set up an equation for both the red balloon and the blue balloon.
Since the red balloon rises at 2.6 meters per second, we can represent this part of the equation as 2.6s. The balloon is already 7.3 meters off of the ground, so we just add the 7.3 to the 2.6s:
2.6s + 7.3
Since the blue balloon rises at 1.5 meters per second, we can represent this part of the equation as 1.5s. The balloon is already 12.4 meters off of the ground, so we just add the 12.4 to the 1.5:
1.5s + 12.4
To determine when both balloons are at the same height, we set the two equations equal to each other:
2.6s + 7.3 = 1.5s + 12.4
Then, we solve for s. First, the variables must be on the same side of the equation. We can do this by subtracting 1.5s from both sides of the equation:
1.1s + 7.3 = 12.4
Next, we must get s by itself. We work towards this by subtracting 7.3 from both sides of the equation:
1.1s = 5.1
Last, we divide both sides by 1.1. So s = 4.63.
This means that it will take 4.63 seconds for both balloons to reach the same height. If we want to know what height that is, we simply plug the 4.63 back into each equation:
2.6s + 7.3
= 2.6 (4.63) + 7.3
= 19.33
1.5s + 12.4
= 1.5 (4.63) + 12.4
= 19.33
After 4.63 seconds, the balloons will have reached the same height: 19.33 meters.
Answer: I think it is b
Explanation:
Let U={q, r, s, t, u, V, W, X, Y, Z},
trapecia [35]
Answer:
Ooh is theis unions I did it but
Answer:
Please check the explanation and attached graph.
Step-by-step explanation:
Given the parent function
y = |x|
In order to translate the absolute function y = |x| vertically, we can use the function
g(x) = f(x) + h
when h > 0, the graph of g(x) translated h units up.
Given that the image function
y=|x|+4
It is clear that h = 4. Since 4 > 0, thus the graph y=|x|+4 translated '4' units up.
The graph of both parent and translated function is attache below.
In the graph,
The blue line represents the parent function y=|x|.
The red line represents the image function y=|x| + 4.
It is clear from the graph that the y=|x| + 4 translated '4' units up.
Please check the attached graph.