Answer:
<em>In the case of a solar thermal panel we are trying to heat above the ambient temperature so conduction and convection will work against us by taking heat from the panel to the out- side world. ... The sun (at 6000 C surface temperature) is hotter than the solar panel so the panel will get hot due to the solar radiation.</em>
Explanation:
Linear momentum has to be conserved. It was zero before the thread eas burned ... when nothing was moving ... so the momentum of the masses moving in opposite directions has to add up to zero. ... Momentum = mass times speed. ... In one direction, you have 5 kg times 1/5 m/s= 1 kg-m/s. ... We need 1 kg-m/s in the other direction. ... 7 kg times speed = 1 kg-m/s. ... Can you finish it from here ?
Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as
(2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find

And solving for
,

Answer:
A. A login vty mode subcommand
Explanation:
since we are protecting co-workers from connecting to the switches from their desktop PCs, we would need a Telnet line which is used to connect to devices remotely from other network devices on the same network segment as the device we want to connect to. A login local vty subcommand configures a local username for login access but since our design constraint is to configure without usernames, option A is the correct answer.
The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s