Answer:
The total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
The instrument is a Geiger counter and is used to measure radioactive level around people's bodies.
Answer:
609547.12 Pa ≈ 6.10×10^5 Pa
Explanation:
Step 1:
Data obtained from the question. This include the following:
Force (F) = 49.8 N
Radius (r) = 0.00510 m
Pressure (P) =..?
Step 2:
Determination of the area of the head of the nail.
The head of a nail is circular in nature. Therefore, the area is given by:
Area (A) = πr²
With the above formula we can obtain the area as follow:
Radius (r) = 0.00510 m
Area (A) =?
A = πr²
A = π x (0.00510)²
A = 8.17×10^-5 m²
Therefore the area of the head of the nail is 8.17×10^-5 m²
Step 3:
Determination of the pressure exerted by the hammer.
This is illustrated below:
Force (F) = 49.8 N
Area (A) = 8.17×10^-5 m²
Pressure (P) =..?
Pressure (P) = Force (F) /Area (A)
P = F/A
P = 49.8/8.17×10^-5
P = 609547.12 N/m²
Now, we shall convert 609547.12 N/m² to Pa.
1 N/m² = 1 Pa
Therefore, 609547.12 N/m² = 609547.12 Pa.
Therefore, the pressure exerted by the hammer on the nail is 609547.12 Pa or 6.10×10^5 Pa