The mass of the large truck is determined as 5680 kg.
<h3>Mass of the truck</h3>
The mass of the truck is calculated as follows;
P = mv
where;
- P is momentum
- m is mass
- v is velocity
m = P/v
m = 125000/22
m = 5680 kg
Thus, the mass of the large truck is determined as 5680 kg.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
minimum stopping distance will be d = 75 m
Explanation:
Maximum force exerted by the bracket is given as
F = 9000 N
now we know that mass of the object is
m = 6000 kg
so the maximum acceleration that truck can have is given as



now for finding minimum stopping distance of the truck



The magnitude and direction of the electric field in the wire are mathematically given as
![L &=[(v / L) v / m] \hat{i}](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D)
<h3>What is the magnitude and direction of the electric field in the wire?</h3>
Generally, the equation for is mathematically given as
A cylindrical wire that is straight and parallel to the x-axis has the following dimensions: length L, diameter d, resistivity p, diameter d, potential v, and z length. combining elements from both sides
E d 
![\begin{aligned}&-E \int_0^L d x=\int_v^0 d v \\\therefore E \cdot L &=v \\L &=[(v / L) v / m] \hat{i}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26-E%20%5Cint_0%5EL%20d%20x%3D%5Cint_v%5E0%20d%20v%20%5C%5C%5Ctherefore%20E%20%5Ccdot%20L%20%26%3Dv%20%5C%5CL%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D%5Cend%7Baligned%7D)
In conclusion, the magnitude and direction of the electric field in the wire are given as
![L &=[(v / L) v / m]](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D)
Read more about electric fields
brainly.com/question/15800304
#SPJ4
Jasper, because he developed friendships playing with everyone last year,
Thats the answer
Answer:
(c) more than 500
Explanation:
Until 2019, more than 3000 planetary systems have been discovered that contain more than 4000 exoplanets, since some of these systems contain multiple planets. Most known extrasolar planets are gas giants equal to or more massive than the planet Jupiter, with orbits very close to its star.