Answer:
Average atomic mass = 15.86 amu.
Explanation:
Given data:
Number of atoms of Z-16.000 amu = 205
Number of atoms of Z-14.000 amu = 15
Average atomic mass = ?
Solution:
Total number of atoms = 205 + 15 = 220
Percentage of Z-16.000 = 205/220 ×100 = 93.18%
Percentage of Z-14.000 = 15/220 ×100 = 6.82 %
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (93.18×16.000)+(6.82×14.000) /100
Average atomic mass = 1490.88 + 95.48 / 100
Average atomic mass = 1586.36 / 100
Average atomic mass = 15.86 amu.
I believe the answer is a balance or mechanical scale
<span>Since,
1000 grams of water = 1000 mL of water</span><span>
So,
At any of the given temperature:
</span>1000 mL = 10 x 100 mL
<span>
moles of NH4Cl = 53.5/53.49
= 1.0 m
= 1.0 mol/Kg
Delta T = 2 x 1.86 x 1.0
= 3.72 c
= - 3.72 °C</span>
Answer:
Cl⁻ was oxidized.
Explanation:
- 4HCl + MnO₂ → Cl₂ + 2H₂O + MnCl₂
Oxidation can be defined as the process in which the oxidation number of a substance increases.
On the left side of the equation, Cl has a charge of -1 (in HCl); while on the right side of the equation Cl has a charge of 0 in Cl₂.
Thus, Cl⁻ was oxidized.
1. Berkelium(Berkeley, CA) 2. Dubnium(Dubna, Russia) 3. Darmstaditum (Darmstadt, Germany) 4. Erbium(Ytterby, Sweden) 5. Strontium(Strontian, Scotland) 6. Terbium(Ytterby, Sweden) 7. Yttebium(Ytterby, Sweden) 8. Yttrium(Ytterby, Sweden)