Answer:
a) E = 4.5*10⁴ V/m
b) C= 17.7 nF
c) Q = 159. 3 nC
Explanation:
a)
- By definition, the electric field is the electrostatic force per unit charge, and since the potential difference between plates is just the work done by the field, divided by the charge, assuming a uniform electric field, if V is the potential difference between plates, and d is the separation between plates, the electric field can be expressed as follows:

b)
- For a parallel-plate capacitor, applying the definition of capacitance as the quotient between the charge on one of the plates and the potential difference between them, and assuming a uniform surface charge density σ, we get:

From (1), we know that V = E*d, but at the same time, applying Gauss'
Law at a closed surface half within the plate, half outside it , it can be
showed than E= σ/ε₀, so finally we get:

c)
- From (3) we can solve for Q as follows:

Sound is a mechanical wave <span>that results from the back and forth vibration of the particles of the medium through which the sound wave is moving. If a sound wave is moving from left to right through air, then particles of air will be displaced both rightward and leftward as the energy of the sound wave passes through it. The motion of the particles is parallel (and anti-parallel) to the direction of the energy transport. This is what characterizes sound waves in air as longitudinal waves.</span><span>
</span>
Thermal energy, creates steam or pressure, therefore, if in a small space it creates pressure within its "shell"