How about putting one battery in the freezer while putting another by a radiator or something that gives off heat. Leave them for an hour, then place them in an object that uses batteries and time how long it takes for it to die: Note: It may take many hours for the battery to fully deplete.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Galvanization is defined as the process in which a protective layer of zinc is applied to iron or steel to prevent the metal from rusting.
Zinc prevents the oxidation of iron and acts as a reducing agent in the process.
The half reaction for the process follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u> 
Net chemical equation: 
Hence, the balanced chemical equation is written above.
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
Answer: 
Explanation:
Lattice energy : It is defined energy released when ions combine together in a gaseous phase to form a compound. it is energy possessed by the crystal lattice of a compound. Denoted by symbol
.
, energy is absorbed while forming of the lattice
, energy is release while forming of the lattice

One mole of sodium ion when combines with one mole chloride ion release 786 kJ of energy.