Remember, look at the coefficients in the balanced equation! Here are three mole ratios:
1 mole<span> N2 / </span>3 moles<span> H2.</span>
3 moles<span> H2 / 2 moles NH3.
</span>
Answer:
2.5 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have two different values of V and P:
<em>P₁V₁ = P₂V₂
</em>
P₁ = 5.0 atm, V₁ = 3.5 L.
P₂ = 7.0 atm, V₂ = ??? L.
<em>∴ V₂ = P₁V₁/P₂ </em>= (5.0 atm)(3.5 L)/(7.0 atm) = <em>2.5 L.
</em>
Explanation:
Since this is an equilibrium problem, we apply le chatelier principle. This principle states that whenever a system at equilibrium is disturbed due to change in several factors, it would move in a way to annul such change.
C2H4(g) + Cl2 ⇔ 2C2H4Cl2(g)
When the concentration of C2H4 is increased, there is more reactant sin the system. In order to annul this change, the equilibrium position will shift to the right favoring product formation.
When the concentration of C2H4Cl2 is increased, there is more product in the system. To annul this change, the equilibrium position will shift to the left, favoring reactant formation.
Total energy of an isolated system remains constant throughout time; this is referred to as conservation of energy.
The correct answer to this question is carbon dioxide. A cake rises as it bakes because a chemical change causes carbon dioxide to be produced. Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.