1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
15

PLSSSS HELP ME PLSSSSS

Mathematics
1 answer:
Yakvenalex [24]3 years ago
8 0

Answer:

1/27

Step-by-step explanation:

Ok this looks like a huge number but if you break it into smaller numbers its easier to work with

3^5=243 so we can write...

(3^5)^-3/5

Rule of exponents state that you can multiply powers

5*3/5=15/5=-3

Because its negative we would make it over 1

1/3^3

And simplify...

1/3*3*3

1/27

You might be interested in
Consider the expression. (StartFraction 2 m Superscript negative 1 baseline n Superscript 5 Baseline Over 3 m Superscript 0 Base
suter [353]

Answer:

The correct option is option (3) 4 ÷ 25.

Step-by-step explanation:

The expression in terms of <em>m</em> and <em>n</em> is:

F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}

Exponent rule of division:

a^{x}\div a^{y}=a^{x-y}

Compute the value of the expression for <em>m</em> = -5 and <em>n</em> = 3 as follows:

F(m,n)=[\frac{2m^{-1}n^{5}}{3m^{0}n^{4}}]^{2}

F(-5,3)=[\frac{2\csdot (-5)^{-1}\cdot (3)^{5}}{3\cdot (-5)^{0}\cdot (3)^{4}}]^{2}

             =\{\frac{2}{3}\times [(-5)^{-1-0}\times (3)^{5-4}}]\}^{2}\\\\=\{\frac{2}{3}\times \frac{-1}{5}\times 3\}^{2}\\\\=\{-\frac{2}{5}\}^{2}\\\\=\frac{4}{25}

Thus, the correct option is option (3) 4 ÷ 25.

8 0
3 years ago
Read 2 more answers
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
If xt = 3y -1 and us = 28, find the value of y
olga55 [171]
3y - 1 = 28
+ 1 + 1
----------------
3y = 29
---- ----
3 3
y= 9.66
8 0
3 years ago
What is the answer to question 10
Whitepunk [10]
He needs to earn ; 77.99-20= 57.99 dollars

so in one week there are 2 weekends; so he earns 6×3×2 = 36 dollars

so no of week = 57.99÷ 36= 1.6 weeks

so weeks are in natural no thus it will take him 2 weeks !!
8 0
3 years ago
Read 2 more answers
Part of the student's solution for finding the quotient 288 ÷ 24 is shown below. 240 ÷ 24 = 10 288 – 240 = 48 48 ÷ 24 = 2 Which
Neporo4naja [7]

Answer:

A. 10 + 2

Step-by-step explanation:

288 ÷ 24 is shown below. 240 ÷ 24 = 10 288 – 240 = 48 48 ÷ 24 = 2

After obtaining the quotient of 288 ÷ 24 = 10,

Multiplying the divisor 24 by 10 = 240 and subtracting 240 from 288 to obtain the remainder = 48, the divisor is again used in 48 and the quotient obtained is added to the intula quotient value of 10 ; (10 + 2) and the process repeated

6 0
2 years ago
Other questions:
  • The product of a number and -2.5 is 60
    8·1 answer
  • -3x+7=6x-2 What would the variable be?
    8·1 answer
  • Please help! Kylie is 231 miles away from Anna. They are traveling towards each other. If Anna travels 9 mph faster than Kylie a
    15·1 answer
  • Kevin is trying to find a white sock in his drawer. He has 16 white socks, 4 brown socks, and 6 black socks. What is the probabi
    7·1 answer
  • Xy - 2xy + 3y - 6x y + 4xy
    8·1 answer
  • What is the greatest common factor of 32 and 48
    8·2 answers
  • Three fourths times 12 equals
    5·2 answers
  • After Thanksgiving, Fernando had 3/8 of a pumpkin pie left. Later that night, 1 point
    14·1 answer
  • Which two recipes have equivalent ratios of cups of flour needed to the number of cookies?
    11·1 answer
  • The 2014 draft picks for the NBA basketball teams have heights that are approximately normally distributed with mean 79.1 inches
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!