1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
5

What is newton's second law of motion?

Physics
1 answer:
lord [1]3 years ago
3 0

Answer:

Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

You might be interested in
(a) What is the potential between two points situated 10 cm and 20 cm from a 3.0-μC point charge? (b) To what location should th
julia-pushkina [17]

Answer:

(a) 135 kV

(b) The charge chould be moved to infinity

Explanation:

(a)

The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

V = -\dfrac{kQ}{r}

where k = 9\times 10^9 \text{ F/m}

Difference in potential between the points is

kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}

PD = 135\times 10^3\text{ V} = 135\text{ kV}

(b)

If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.

270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]

10 - \dfrac{1}{x} = \dfrac{270000}{9\times10^9\times3\times10^{-6}} = 10

\dfrac{1}{x} = 0

x = \infty

The charge chould be moved to infinity

7 0
3 years ago
A mass of 0.5 kg hangs motionless from a vertical spring whose length is 1.10 m and whose unstretched length is 0.50 m. Next the
ser-zykov [4K]

Answer:

The maximum length during the motion is L_{max} = 1.45m

Explanation:

From the question we are told that

           The mass  is  m =0.5 kg

            The vertical spring  length is  L = 1.10m

            The unstretched  length is  L_{un} = 1.30m

          The initial speed is v_i = 1.3m/s

          The new length of the spring L_{new} =  1.30 m

The spring constant k is mathematically represented as

                           k = -\frac{F}{y}

Where F is the force applied  = m * g = 0.5 * 9.8=4.9N

           y is the difference in weight which is   =1.10-0.50=0.6m

The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)

    Now  substituting values accordingly

                    k =  \frac{4.9}{0.6}

                       = 8.17 N/m

The  elastic potential energy is given as E_{PE} = \frac{1}{2} k D^2

  where D is this the is the displacement  

Since Energy is conserved the total elastic potential energy would be

             E_T = initial  \ elastic\ potential \ energy + kinetic \ energy

            E_T = \frac{1}{2} k D_{max}^2 =   \frac{1}{2} k D^2 + \frac{1}{2} mv^2

Substituting value accordingly

                \frac{1}{2} *8.17 *D_{max}^2 =\frac{1}{2} * 8.17*(1.30 - 0.50)^2 + \frac{1}{2} * 0.5 *1.30^2

                4.085 * D_{max}^2 = 3.69

                 D^2_{max} = 0.9033

                D_{max} = 0.950m

So to obtain total length we would add the unstretched length

 So we have

                  L_{max} = 0.950 + 0.5 = 1.45m

                               

               

               

                 

                     

5 0
3 years ago
Read 2 more answers
Jacob's family celebrates with him as he jumps with both feet together. Jacob is likely (2 points)
professor190 [17]
Jacob is three years old
3 0
3 years ago
Read 2 more answers
Explain the characteristics of the Gypsum Hills regionIf we have a sample of silicon (Si) atoms that has 14 protons, 14 electron
amid [387]

Answer:

second one

Explanation:

8 0
3 years ago
a volleyball is hit upward with an initial velocity of 7.5 m/s. calculate the displacement of the volleyball when its final velo
Luden [163]

Answer:

The displacement of the volleyball is 2.62 m

Explanation:

Given;

initial velocity of the volleyball, u = 7.5 m/s

final velocity of the volleyball, v = 2.2 m/s

displacement of the volleyball, d = ?

Apply the following kinematic equation;

v² = u² - 2gd

2gd = u² - v²

d = \frac{u^{2}-v^{2}  }{2g}\\\\d = \frac{7.5^{2}-2.2^{2}  }{2*9.8}\\\\d = 2.62 \ m

Therefore, the displacement of the volleyball is 2.62 m

7 0
3 years ago
Other questions:
  • The human ear canal is, on average, 2.5cm long and aids in hearing by acting like a resonant cavity that is closed on one end an
    15·1 answer
  • A certain 100W light bulb has an efficiency of 95%. How much thermal energy will this light bulb add to the inside of a room in
    12·1 answer
  • What is the difference between mass and weight?
    15·1 answer
  • Which of these actions will increase friction? Check all that apply.
    14·1 answer
  • If you take rocks from the Earth to the moon (5 points)
    14·2 answers
  • What is the net worth of a car moving 30 miles per hour
    8·1 answer
  • Which statement correctly compares sound and light waves ​
    15·1 answer
  • What potential difference is needed to stop an electron that has an initial velocity v=6.0
    12·1 answer
  • A bullet of 5 gm is fired from a pistol of 1.5 kg. If the recoil velocity of pistol is 1.5 m/s,
    6·1 answer
  • A child sleds down a hill with an acceleration of 2.94 m/s2. If her initial speed is 0.0 m/s and her final speed is 17.5 m/s, ho
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!