1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
14

The following table lists the work functions of a few common metals, measured in electron volts. Metal Φ(eV) Cesium 1.9 Potassiu

m 2.2 Sodium 2.3 Lithium 2.5 Calcium 3.2 Copper 4.5 Silver 4.7 Platinum 5.6 Using these data, answer the following questions about the photoelectric effect. Part A Light with a wavelength of 190 nm is incident on a metal surface. The most energetic electrons emitted from the surface are measured to have 4.0 eV of kinetic energy. Which of the metals in the table is the surface most likely to be made of? View Available Hint(s) Submit Part B Of the eight metals listed in the table, how many will eject electrons when a green laser (λg=510nm) is shined on them? View Available Hint(s) Submit Part C Light with some unknown wavelength is incident on a piece of copper. The most energetic electrons emitted from the copper have 2.7 eV of kinetic energy. If the copper is replaced with a piece of sodium, what will be the maximum possible kinetic energy K of the electrons emitted from this new surface? Enter your answer numerically in electron volts to two significant figures. View Available Hint(s)
Physics
1 answer:
Citrus2011 [14]3 years ago
7 0

A. Lithium

The equation for the photoelectric effect is:

E=\phi + K

where

E=\frac{hc}{\lambda} is the energy of the incident light, with h being the Planck constant, c being the speed of light, and \lambda being the wavelength

\phi is the work function of the metal (the minimum energy needed to extract one photoelectron from the surface of the metal)

K is the maximum kinetic energy of the photoelectron

In this problem, we have

\lambda=190 nm=1.9\cdot 10^{-7}m, so the energy of the incident light is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{1.9\cdot 10^{-7} m}=1.05\cdot 10^{-18}J

Converting in electronvolts,

E=\frac{1.05\cdot 10^{-18}J}{1.6\cdot 10^{-19} J/eV}=6.5 eV

Since the electrons are emitted from the surface with a maximum kinetic energy of

K = 4.0 eV

The work function of this metal is

\phi = E-K=6.5 eV-4.0 eV=2.5 eV

So, the metal is Lithium.

B. cesium, potassium, sodium

The wavelength of green light is

\lambda=510 nm=5.1\cdot 10^{-7} m

So its energy is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5.1\cdot 10^{-7} m}=3.9\cdot 10^{-19}J

Converting in electronvolts,

E=\frac{3.9\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.4 eV

So, all the metals that have work function smaller than this value will be able to emit photoelectrons, so:

Cesium

Potassium

Sodium

C. 4.9 eV

In this case, we have

- Copper work function: \phi = 4.5 eV

- Maximum kinetic energy of the emitted electrons: K = 2.7 eV

So, the energy of the incident light is

E=\phi+K=4.5 eV+2.7 eV=7.2 eV

Then the copper is replaced with sodium, which has work function of

\phi = 2.3 eV

So, if the same light shine on sodium, then the maximum kinetic energy of the emitted electrons will be

K=E-\phi = 7.2 eV-2.3 eV=4.9 eV

You might be interested in
A 2-kg box sits on a horizontal table. the force of friction between the box and the table is 10 n. the box is pushed to the rig
dangina [55]
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.

Rearranging this equation to find acceleration would give us:
a = F/m

The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N

The mass is 2kg.

Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2

The acceleration of the box is 5ms^-2
6 0
3 years ago
A yo‑yo with a mass of 0.0800 kg and a rolling radius of =2.70 cm rolls down a string with a linear acceleration of 5.70 m/s2.
N76 [4]

Explanation:

Given that,

Mass, m = 0.08 kg

Radius of the path, r = 2.7 cm = 0.027 m

The linear acceleration of a yo-yo, a = 5.7 m/s²

We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.

(a) Tension :

The net force acting on the string is :

ma=mg-T

T=m(g-a)

Putting all the values,

T = 0.08(9.8-5.7)

= 0.328 N

(b) Angular acceleration,

The relation between the angular and linear acceleration is given by :

\alpha =\dfrac{a}{r}\\\\\alpha =\dfrac{5.7}{0.027}\\\\=211.12\ m/s^2

(c) Moment of inertia :

The net torque acting on it is, \tau=I\alpha, I is the moment of inertia

Also, \tau=Fr

So,

I\alpha =Fr\\\\I=\dfrac{Fr}{\alpha }\\\\I=\dfrac{0.328\times 0.027}{211.12}\\\\=4.19\times 10^{-5}\ kg-m^2

Hence, this is the required solution.

3 0
3 years ago
NEED ANSWERS FAST! WHICH ONE IS IT?! ?!
kow [346]
I used to wish that I can fly
5 0
3 years ago
If blue light hits a red filter, what kind of light comes through the filter?
kotegsom [21]
It can be either C or B

Reasons it can be C: Red and Blue together(if I'm correct in art) is the combined color of two of the 3 primary colors to get a purple/violet color and if said filter is see through or just too dense for the light to even penetrate the said filter(in theory) but all in all purple is the answer with the two primary colors blue and red.

But also, it depends on what kind of filter it is, if the filter is like a screen filter then it will just come out in blue with the slightly different colors of again purple but in a darker tone then the actual eye can see.

Or it can be just C again cause the filter can be a film but that's a bit too far and to complex for right now so I believe it is B
8 0
3 years ago
3. An explosion of gas from a Hawaiian volcano blows a bunch of rocks into the sky. Each has 2000J of
anzhelika [568]

Answer: 3.906kg

Explanation:

K.E = 2000J

V = 32m/s

m =?

K.E = 1/2MV2

2000 = 1/2M x (32^2)

2000 = 1/2M x 1024

2000 = 512M

M = 2000/512

M = 3.906kg

4 0
3 years ago
Other questions:
  • Particle 1 and particle 2 have masses of m1 = 2.2 × 10-8 kg and m2 = 4.8 × 10-8 kg, but they carry the same charge q. The two pa
    11·1 answer
  • If a force of 250N is applied to a piano being pushed up a ramp at an angle of 18degrees above the horizontal, what force is bei
    6·1 answer
  • How much power is expended if you lift a 60 n crate 10 meters in 1 second?
    6·1 answer
  • Points A, B, and C lie along a line from left to right, respectively. Point B is at a lower electric potential than point A. Poi
    15·1 answer
  • John rides his motorcycle with a constant speed of 40 miles per hour. How far can he travel in 1/2 an hour?
    14·1 answer
  • Calculate the intensity of current flowing through a computer that consumes 180W and operates at 120 V.
    8·1 answer
  • Which of the following is the correct name for CCl4
    11·2 answers
  • HELP PLEASE!!!!! pulleys, wheels, and axels.
    15·2 answers
  • A space station, in the form of a spoked wheel 120 m in diameter, rotates to provide an artificial gravity of 3.00 m/s² for pers
    15·1 answer
  • 5. What things would settle in pond water, making it turn to land (terrestrial) succession?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!