Answer:
(a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Explanation:
Given that,
Charge = 10.1 μC
Capacitor C₁ = 1.10 μF
Capacitor C₂ = 1.92 μF
Capacitor C₃ = 1.10 μF
Potential V₁ = 51.5 V
Let V₁ and V₂ be the potentials on the two plates of the capacitor.
(a). We need to calculate the potential on the negative plate of the 1.10 μF capacitor
Using formula of potential difference

Put the value into the formula


The potential on the second plate



(b). We need to calculate the equivalent capacitance of the two capacitors
Using formula of equivalent capacitance

Put the value into the formula



Hence, (a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
If you look below, we are using the centripetal acceleration formula. You just need to plug your numbers in and it should work!
The number converted is 
Explanation:
In order to convert from the original units to the final units, we have to keep in mind the following conversion factors:



The original unit that we have is

Therefore, it can be rewritten as:

Therefore, since the initial number was 0.779, the final value is

#LearnwithBrainly
Answer:

is the no. of electrons
Explanation:
Given:
- quantity of charge transferred,

<u>No. of electrons in the given amount of charge:</u>
As we have charge on one electron 
so,


is the no. of electrons
- Now if each water molecules donates one electron:
Then we require
molecules.
<u>Now the no. of moles in this many molecules:</u>

where
Avogadro No.


- We have molecular mass of water as M=18 g/mol.
<u>So, the mass of water in the obtained moles:</u>

where:
m = mass in gram

