Answer:
0.04 mm Hg / mL / min .
Explanation:
Arterial pressure = 120 mm Hg
right atrial pressure = 0 mm Hg
Drop in pressure due to peripheral resistance = 120 mm Hg
volume of cardiac output per minute = 3000 mL/min
total peripheral resistance
= 120 / 3000 mm Hg / mL / min
= 0.04 mm Hg / mL / min .
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
When people aboard a plane...the amount of baggage you take has to vary because the plane has a certain carrying capacity.
Explanation:
Average power = change in energy / change in time
P = ΔE / Δt
P = (½ mv²) / t
P = (½ (0.825 kg) (0.620 m/s)²) / (0.021 s)
P = 7.55 Watts