Let's call the constant acceleration a.
At a time t, its speed will thus be v(t)=a*t+v0 where v0 is its initial speed, here 10 m/s. Hence v(t)=a*t+10.
From there we can deduce the position P(t)=a*t^2/2+10t+p0 where p0 is the initial position, here 0.
Hence P(t)=a*t^2/2+10t
Let's call T the time at which it's at 50 m/s, we know that P(T)=225m and that v(T)=50 m/s hence a*T+10=50 thus a=40/T and P(T)=(40/2+10)T=30T
Hence T=225/30=7.5
It took 7.5 seconds
<span>they have to be selective permeable to filter out the waste products but allow the nutrients and blood cells to pass through. </span>
Answer:
For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
Explanation:
Answer:


Explanation:
Given:
Let mass of the particle B be, 
then the mass of particle A, 
Energy stored in the compressed spring, 
Now when the compression of the particles with the spring is released, the spring potential energy must get converted into the kinetic energy of the particles and their momentum must be conserved.
Kinetic energy:

.............................(1)
<u>Using the conservation of linear momentum:</u>

.............................(2)
Put the value of
from eq. (2) into eq. (1)

...........................(3)
<u>Now the kinetic energy of particle B:</u>



Put the value of
form eq. (3) into eq. (1):

<u>Now the kinetic energy of particle A:</u>
<u />
<u />
<u />
<u />
