A triple beam balance is used to measure mass
Answer:
The empirical formula is CH2O, and the molecular formula is some multiple of this
Explanation:
In 100 g of the unknown, there are 40.0⋅g12.011⋅g⋅mol−1 C; 6.7⋅g1.00794⋅g⋅mol−1 H; and 53.5⋅g16.00⋅g⋅mol−1 O.
We divide thru to get, C:H:O = 3.33:6.65:3.34. When we divide each elemental ratio by the LOWEST number, we get an empirical formula of CH2O, i.e. near enough to WHOLE numbers. Now the molecular formula is always a multiple of the empirical formula; i.e. (EF)n=MF.So 60.0⋅g⋅mol−1=n×(12.011+2×1.00794+16.00)g⋅mol−1.Clearly n=2, and the molecular formula is 2×(CH2O) = CxHyOz.
Answer:
molecular weight of H2O2 or grams. This compound is also known as Hydrogen Peroxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O2, or 34.01468 grams.
1 grams H2O2 is equal to 0.029399071224542 mole.
1 grams H2O2 to mol = 0.0294 mol
10 grams H2O2 to mol = 0.29399 mol
20 grams H2O2 to mol = 0.58798 mol
30 grams H2O2 to mol = 0.88197 mol
40 grams H2O2 to mol = 1.17596 mol
50 grams H2O2 to mol = 1.46995 mol
100 grams H2O2 to mol = 2.93991 mol
200 grams H2O2 to mol = 5.87981 mol