Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O
Answer:
where is the answer options because it sounds like I need some
Answer:
1) 0.18106 M is the molarity of the resulting solution.
2) 0.823 Molar is the molarity of the solution.
Explanation:
1) Volume of stock solution = 
Concentration of stock solution = 
Volume of stock solution after dilution = 
Concentration of stock solution after dilution = 
( dilution )

0.18106 M is the molarity of the resulting solution.
2)
Molarity of the solution is the moles of compound in 1 Liter solutions.

Mass of potassium permanganate = 13.0 g
Molar mass of potassium permangante = 158 g/mol
Volume of the solution = 100.00 mL = 0.100 L ( 1 mL=0.001 L)

0.823 Molar is the molarity of the solution.