<span>c. run towards a source of water to extinguish the fire
</span>
Answer:
The period of a wave is the time for a particle on a medium to make one complete vibrational cycle. Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.
Answer:
C. The bug's change in momentum is equal to the car's change in momentum.
Explanation:
As we know by Newton's 2nd law

here we have also know that when car hits the bug then force applied by wind shield on the bug is same as the force applied by the bug on the car's wind shield as per Newton's III law

so we know that

so we have

so correct answer will be
C. The bug's change in momentum is equal to the car's change in momentum.
Answer:

Explanation:
As we know that the orbital speed of the satellite is given as

also we know that
time period of the revolution is given as

now from above equation we know that


so we will have

now plug in all data in this equation

