Answer : The final volume of the balloon at this temperature and pressure is, 17582.4 L
Solution :
Using combined gas equation is,
where,
= initial pressure of gas = 1 atm
= final pressure of gas = 0.3 atm
= initial volume of gas = 6000 L
= final volume of gas = ?
= initial temperature of gas = 273 K
= final temperature of gas = 240 K
Now put all the given values in the above equation, we get the final pressure of gas.

Therefore, the final volume of the balloon at this temperature and pressure is, 17582.4 L
Answer:B.As the north pole of the electromagnet nears the south pole of the permanent magnet, the current reverses and the poles of the magnets then repel.
Explanation:
The distance is 17 and the displacement is 1
Derived quantities depend on.( fundamental)..........physical quantity
Are you from Nepal?
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.