Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m
False. Inertia and mass is not described in Newton’s second law of motion but in Newton’s first law of motion. Newton’s first law of motion or sometimes referred to as the law of inertia. In Newton’s first law indicates that an object at rest will remain at rest unless acted by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²