Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/
.
3.0 x 10 = k x 5.0
30 = 5k
⇒ k =
................ 1
On the Moon, the gravitational force is
of that on the Earth.
m x
= k x 5.0
= 5k
⇒ k =
............. 2
Equating 1 and 2, we have;
= 
m = 
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
Answer:
2.48 m/s
Explanation:
We can use the kinematic equation,
s = ut +½at²
Where
s = displacement
u = initial velocity
t = time taken
a = acceleration
Using the equation in vertical direction,
321 = 0×t +½×g×t², u = 0 because initial vertical velocity is 0
We get t = 8.01 s
Using the equation in the horizontal direction,
52 = u×8.01 +½×0×(8.01)²,. a = 0 because no unbalanced force act on object in that direction
So u = 2.48 m/s
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation: