Explanation:
First, we need to determine the distance traveled by the car in the first 30 minutes,
.
Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance,
, in which the driver reduces the speed to 40km/hr is
.
Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by
.
.
Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

Therefore, the average speed of the car is 50 km/hr.
Explanation:
A compound is a pure substance composed of two or more different atoms chemically bonded to one another. A compound can be destroyed by chemical means. It might be broken down into simpler compounds, into its elements or a combination of the two.
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Answer:
3,544.375Joules
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion, It is expressed as;
Kinetic energy = 1/2mv²
m is the mass of the body
v is the velocity
For the ball carrier;
KE = 1/2(75)(6.5)²
KE = 3168.75/2
KE = 1584.375Joules
For the defender;
KE = 1/2(80)(7)²
KE = 3920/2
KE = 1960Joules
The kinetic energy of the ball carrier/defender system BEFORE the tackle = KE for the carrier + KE for the defender
kinetic energy of the ball carrier/defender system BEFORE the tackle= 1584.375+1960 = 3,544.375Joules
Answer:
The person above me is right i had a test a couple of days ago and thats kinda what u put and got it right!